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Introduction 

An eye-gaze-guided computer interface provides an 

important alternative interaction modality for disabled 

users or an additional communication channel for 

normal users [9]. Such interfaces are driven by an eye 

tracker - equipment that provides the coordinates of 

the user’s eye-gaze on a computer screen.  

There are several challenges associated with design 

and development of such interface that can be divided 

into three categories. Processing: the eye positional 

data provided by the eye tracker is frequently missing, 

inaccurate, noisy or/and delayed due to the 

transmission and processing delays [1,4] 

Classification: raw eye positional data must be 
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Abstract 

This paper introduces a Real 

Time Eye Movement 

Identification (REMI) protocol 

designed to address 

challenges related to the 

implementation of the eye-

gaze guided computer 

interfaces. The REMI protocol 

provides the framework for 1) 

eye position data processing 

such as noise removal, 

smoothing, prediction and 

handling of invalid positional 

samples 2) real time eye 

movement identification into 

the basic eye movement types 

3) mapping of the classified 

eye movement data to 

interface actions such as 

object selection. 



  

 

classified by an eye movement identification algorithm 

in real-time into basic eye movement types (fixations, 

saccades, pursuits etc.)  to provide necessary 

information for the future interface actions [4,9]. 

Classification of various eye movement types is not an 

easy task and provides a formidable challenge even in 

cases of the off-line classification [8].  Action: creating 

communication tokens from the classified eye 

movement data and mapping those tokens into specific 

interface actions [4].  

To the best of our knowledge the integration of 

processing, classification and action into a single 

reliable protocol was not done before.  The goal of the 

Real Time Eye Movement Identification (REMI) protocol 

is to provide such integration. In this paper we provide 

theoretical design and implementation details of the 

REMI protocol and report results from the application of 

REMI to a real-time eye-gaze-guided interaction 

system. 

REMI Protocol Design Overview 

Figure 1 provides an overview of the REMI protocol. 

The general goal of the REMI protocol is to process the 

raw eye positional data and to provide enough 

information to an interface for the interface to take a 

specific action. This goal is achieved in three phases 

Processing, Classification and Action that are described 

next. 

Processing 

Very frequently the data received from an eye tracker 

is provided in the eye tracker units that are 

hardware/software dependent. The first goal of the 

processing component is to convert an eye-gaze’s 

coordinates from an eye tracker’s units into degrees. 

The rotation of the eye globe estimated in degrees 

allows classification of an individual eye gaze position 

sample into a basic eye movement type by the 

classification module. The quality of the eye movement 

data can be affected by the eye blinking, moisture and 

lighting conditions, therefore producing invalid eye 

position samples. The second goal is to disregard the 

invalid or noisy eye position samples substituting them 

with a carefully selected estimation. The third goal is to 

improve positional accuracy of the signal. The forth 

goal is to substitute current eye-gaze coordinates to 

the predicted coordinates. Such prediction may be 

necessary in cases of high transmission or/and 

processing delays and should be applied to gaze-

contingent compression systems [5] or systems 

designed for the instantaneous interaction [7]. Figure 1 

provides the overview of the Classification module. 

Classification 

The goal of this module is to classify the processed eye 

position samples into specific eye movement types, e.g. 

fixation (stationary eye movement that provides high 

acuity picture to the brain), saccade (rapid eye rotation 

that moves an eye from one fixation to the next), 

pursuit (smooth eye transition that follows a moving 

object), etc. [1]. Basic eye movement types represent 

greatly reduced information space, where each type of 

movement is described by a set of parameters, e.g., 

fixation by location and duration, saccade by location, 

amplitude and direction, pursuit by location, duration, 

direction and velocity. The design of classification 

module should provide an easy way to employ any real-

time capable classification model. 

figure 1. Overview of the REMI protocol 

figure 2. Overview of the Processing 

module 
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Action 

The goal of the action module is to provide an interface 

with a history of previous eye movement types and 

their parameters. This information can be treated by 

the interface as a sequence of interaction tokens 

allowing to take a specific action, e.g., fixation duration 

and location token determines “click” characteristics 

[9], saccade onset/offset tokens determine “click” 

parameters [3,7], sequence of fixation and saccade 

tokens determines a letter typed into a word editor 

[10]. In addition, the action module can perform post-

filtering of the classification module data to discard not 

needed interaction tokens. 

REMI Protocol Implementation 

Figure 3 provides an overview of the implementation. 

Processing 

Device specific application programming interface (API) 

is highly dependent on the type of the eye tracker 

used. The API provides eye positional data in the form 

of a 4-tuple (x,y,t,v), where x and y are coordinates of 

the eye gaze location is measured in the eye tracker’s 

specific units that very often vary vendor to vendor, t is 

the time when the sample was taken, v is the validity 

of the sample that represents the eye tracker’s 

confidence in the accuracy of the sample provided. 

Conversion of the eye tracker units into degrees is 

described in [1]. Invalid eye position samples are 

detected through the parameter v. Noise filtering, 

smoothing and more accurate estimation of an eye 

gaze’s coordinates is done by a two state Kalman filter 

[4]. Positional accuracy can be also improved by 

applying the data collected during eye tracker’s 

calibration procedure. In case when eye gaze prediction 

is necessary, it can done by a six state Kalman filter 

[6]. The result of the Processing stage is stored in the 

Gaze Data record and is sent to the classification 

module at the eye tracker’s sampling frequency. 

Classification 

Figure 4 provides an overview of the implementation. 

The Gaze Data information is stored in a queue for 

further processing. Necessary queue size is determined 

by a specific eye movement classification model. 

Velocity based classification models such as Velocity 

Threshold Identification (I-VT), Hidden Markov Model 

Identification (I-HMM), Kalman Filter Identification (I-

KF) [8] require a queue size of two to conduct velocity 

calculation. Dispersion based models such as Dispersion 

Threshold Identification (I-DT), Minimum Spanning 

Tree Identification (I-MST) [8] require a queue size that 

is proportional to their temporal sampling window. 

Acceleration based models such as  Finite Input 

Response Filter (I-FIR) [1] require a queue size that is 

proportional to the maximum expected saccade’s 

amplitude. It should be noted that larger queue size 

results in an increased processing time therefore 

reducing overall system’s performance.  

Information in the queue is employed in populating of 

the Eye Tracker Record (ETR) which contains eye 

positional sample coordinates, velocity, acceleration 

and other auxiliary data. The Eye Movement Library 

contains an implementation of the specific classification 

model such as the I-VT, I-HMM, I-KF, I-DT, I-MST, I-

FIR and allows to classify an individual eye-gaze point 

into a specific basic eye movement type based on the 

model selected. 

A classified eye position sample is employed in the 

population of the Eye Movement Record (EMR) queue, 

figure 3. REMI implementation diagram 

figure 4. Classification module 
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which contains an information about previous and 

current eye movement types experienced by a user. 

The EMR queue is passed as an input to the Action 

module. Figure 5 shows the process of the EMR 

generation or an update by an eye movement 

classification model.  Specifically, the information in the 

EMR queue is updated or created with each upcoming 

classified eye position sample (the actual classification 

of an individual sample is beyond the scope of this 

paper and can be found through [8]). The update is 

based on the properties of the newly processed ETR, 

determining whether it is a part of a continuing or a 

new movement type. For example, the classification 

module has to determine if an incoming ETR sample is 

a part of the current fixation or a first sample of a new 

eye movement type, if the EMR already contains a 

detected fixation. In case if the incoming sample is a 

part of the continuing fixation, fixation properties such 

as the coordinates and the duration are updated. If the 

incoming sample is not a part of a fixation, e.g., it is a 

part of a saccade, a new EMR is created and pushed to 

the EMR sampling queue.  Algorithm which is 

responsible for the update of the EMR is presented by 

the Figure 6. 

Action 

The action module takes the information supplied by 

the EMR queue to provide a history of the previously 

detected eye movement types and their parameters 

which serve as basic communication tokens to an 

interface. 

After every update the EMR queue is passed to the 

bridge object and the “updated” flag is set. The goal of 

the bridge/data pool is to provide a communication 

channel between the REMI and an eye guided interface, 

making their implementation and the run environments 

independent of each other. The interface, keeps a 

check on the “updated” flag and in case when the flag 

is set, the interface reads the data from the bridge. 

After this operation the flag is unset. Such algorithm 

ensures that the interface actions are performed only 

once, after the data is read. The EMR queue is 

referenced by the both the bridge and the interface. 

The REMI has a write only access to the bridge object. 

On the other hand, the interface has read only access 

to the bridge object with an exception to the “update” 

flag. 

The designer of the eye gaze interaction system should 

decide upon specific interface actions based on the 

available interaction tokens.        

REMI Protocol Practical Results 

The REMI was implemented as a part of the 

development of the iGaze system [2], which is a real-

time eye-gaze driven photo viewing application. The 

iGaze employs simple communication tokens created 

from fixations, i.e., coordinates of the fixation 

determine coordinates of the “click” and fixation 

duration determines the time of the “click”. Figure 7 

presents a snapshot of the iGaze application. 

The REMI evaluation test consisted of 21 volunteers, 

age 18-25 (average 22.3), with normal or corrected-to-

normal vision. The experiments were conducted with a 

Tobii x120 eye tracker, 24-inch flat panel screen with a 

resolution of 1980x1200 pix. Subjects were seated 

approximately 710 mm from the eye tracker. Sampling 

of the eye position coordinates was done at 120Hz. 

figure 5. The eye movement record 

generation process in the REMI 
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Two eye movement classification models were selected 

to test the REMI protocol – the Velocity Threshold 

Identification (I-VT) and the Kalman Filter Identification 

(I-KF) [8]. In case of the I-VT related test, only the 

Conversion component was employed in the Processing 

module. In case of the I-KF, the Noise Removal and the 

Accuracy Improvements employed a two state Kalman 

filter [4].  

Each participant was asked to complete a sequence of 

five tasks using the iGaze application. Prior to each task, 

a subject was presented with an image cropped from 

one of the pictures stored in the iGaze application. The 

goal of each task was to find the original picture within 

three minutes. After each task, completion time was 

recorded. If a participant failed to find the picture, a 

“time out” event was recorded. Half of the subjects 

were assigned to complete the tasks using the I-KF 

model and the remaining half were assigned to 

complete the tasks using the I-VT model. 

Processing 

The results of the tests indicate that the I-KF test setup, 

where the accuracy improvement was done by a 

Kalman filter,  yielded an improvement of 10% of 

positional accuracy (F(1,35067)=168.86,p<0.001). In 

addition, the Accuracy Improvement module made the 

iGaze system more tolerable to the eye tracker’s 

calibration accuracy in cases when the initial accuracy 

was low, i.e., the completion time for the cases with 

low accuracy did not increase as it happened in cases 

without the accuracy improvement [2]. 

Two state Kalman filter, implemented in the Noise 

Removal module provided an estimate for the invalid 

eye position samples. As a result the average 

completion time for the I-KF scenario was 5% faster 

than for the I-VT (F(1,17)=4.86,p<0.04) scenario. In 

addition, the Noise Removal module made the iGaze 

system usable for the cases when data loss was 

extreme, e.g., more than 80%. For more details please 

see [2]. 

Classification & Action 

Both the I-VT and the I-KF models were able to classify 

individual eye position samples in real-time. After a 

preliminary testing, additional processing capabilities 

were added to the Action module. Specifically, the 

interaction tokens created by the micro saccades 

(involuntary saccades with small amplitudes (<2° ) 

which occur during a fixation) were discarded. Such 

saccades created multiple fixation tokens that hindered 

the performance of the iGaze system. Such behavior 

impacted the I-VT setup to a larger degree than the I-

KF setup, due to the lack of the Noise Removal 

component in the Processing module of the I-VT setup. 

Discussion 

Two models mentioned in this paper are capable of the 

real-time eye movement classification into fixation and 

saccades: the I-VT and the I-KF. The I-VT is the easiest 

model to implement, while the I-KF is more 

challenging, but provides noise removal, accuracy 

improvement and prediction capabilities. The I-HMM is 

real-time performance capable, but requires 

probabilistic approach to the eye positional data. The I-

DT requires larger processing queue sizes, therefore 

providing higher interaction latency. Both the I-MST 

and the I-FIR require larger buffer sizes that are 

proportional to the maximum saccade’s duration. In 

addition, the I-MST model requires high computational 

processing power.  All models are extremely sensitive 

figure 6. Algorithm: Update Eye Movement 

Record 

Algorithm : Update Eye Movement Record
Input : Classified Eye Tracker Record
Output : Updated Eye Movement Record

if Classified Movement Type == Fixation then
if Previous Movement Type == Fixation then

Update Previous Fixation EMR ( Position, Duration )
else if Previous Movement Type == Saccade then

Update Previous Saccade EMR ( Offset Position, Duration, Amplitude )
Create New Fixation Eye Movement Record }

else if Previous Movement Type == Smooth Pursuit then
Update Previous Smooth Pursuit EMR ( Offset Position, Duration, 

Velocity )
Create New Fixation Eye Movement Record

if Classified Movement Type == Saccade then
if Previous Movement Type == Saccade then

Update Previous Saccade EMR ( Duration, Amplitude )
else if Previous Movement Type == Smooth Pursuit then

Update Previous Smooth Pursuit EMR ( Offset Position )
Create New Saccade EMR ( Onset Position )

else if  Previous Movement Type == Fixation then
Create New Saccade EMR ( Onset Position )

if Classified Movement Type == Smooth Pursuit then
if Previous Movement Type == Smooth Pursuit then

Update Previous Smooth Pursuit EMR ( Duration, Direction, Velocity )
else if Previous Movement Type == Saccade then

Update Previous Saccade EMR ( Offset Position, Duration, Amplitude )
Create New Smooth Pursuit EMR ( Onset Position, Direction, Velocity )

else if Previous Movement Type == Fixation then
Create New Smooth Pursuit EMR ( Onset Position, Direction, Velocity )



  

 

to the specific values of the input parameters [8]. To 

the best of our knowledge there are no classification 

models that can provide tertiary eye movement 

classification in real-time, i.e., classify eye positional 

signal into fixations, saccades and pursuits. Such 

models are needed by the HCI community to provide 

more versatile interaction experience to the users. 

 Conclusion 

This paper presented the Real-time Eye Movement 

Identification (REMI) protocol that is created to address 

challenges associated with the design and the 

implementation of the real-time eye gaze driven human 

computer interaction systems making them closer to 

the practical reality. Specifically three groups of 

challenges were addressed 1) processing of the missing, 

noisy, inaccurate, delayed eye positional data 2) 

classification of the eye positional samples into the 

basic eye movement types in real-time 3) interface 

actions based on the classified data. The REMI protocol 

is hardware/software independent and can be 

employed with any real-time capable eye movement 

classification model. 

An actual implementation of the REMI protocol with two 

real-time eye movement classification capable models 

was reported. The results indicate that the REMI 

components can be effectively employed for the 

improvement of the eye positional accuracy, noise 

removal, real-time eye movement classification and 

successful interaction with interface components.  
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