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Abstract 

An eye-gaze-guided 

computer interface 

could enable computer 

use by the seriously 

disabled but existing 

systems cost tens of 

thousands of dollars or 

have cumbersome 

setups. This paper 

presents a methodology 

for real-time eye gaze 

tracking using a 

standard webcam 

without the need for 

hardware modification 

or special placement. 

An artificial neural 

network was employed 

to estimate the location 

of the user's gaze based on an image of the user's eye, 

mimicking the way that humans determine where 

another person is looking. Accuracy measurements and 

usability experiments were performed using a laptop 

computer with a webcam built into the screen. The 

results show this approach to be promising for the 

development of usable eye tracking systems using 

standard webcams, particularly those built into many 

laptop computers. 
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Introduction 

An eye tracking system using an unmodified webcam 

could enable severely disabled people to interface with 

computers without specialized equipment. It could also 
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enable a user interface to be sensitive to the attention 

of a user. Sibert and Jacob [8] showed that eye 

tracking interfaces are both usable and superior to 

mouse driven interfaces for some metrics. 

Eye gaze tracking is typically achieved using specialized 

equipment which generally costs several times that of a 

personal computer. Many laptop computers and LCD 

monitors come equipped with built-in webcams 

presenting an opportunity for a much wider acceptance 

of eye-gaze-driven interfaces. Agustin et al. developed 

a webcamera based eye tracking interface but it 

required modification to and special placement of the 

camera [3].  The aim of this research was to develop 

an eye tracker that could use a personal computer's 

built-in webcam, without any modification to the 

camera hardware. 

Conventional methodologies for eye 

tracking rely on the tracker’s ability to 

detect and track the movement of the 

pupil and highlights/reflections of the 

eye’s anatomical structures. Because an 

unmodified webcamera does not have 

the resolution and/or appropriate 

lighting to find the pupil, a different 

methodology was chosen. We employed 

an artificial neural network (ANN) to estimate the 

location of the user’s gaze on the screen, based on the 

difference in how the user's eye appeared in images 

from the camera. The goal of our work was to 

determine if this method yields real-time performance 

capabilities to warrant further research. The developed 

eye tracker was required to provide high degree of 

responsiveness and provide an accuracy that was 

within an order of magnitude of state of the art 

webcamera-based eye trackers. 

In [5] the use of an artificial neural network for eye 

tracking was shown to be fruitful but the type and 

placement of the camera used were not discussed. The 

methodology proposed by Bäck [4] closely matches 

ours and results in an eye tracker with an accuracy of 

between two and four degrees. A notable distinction 

from our method is that Bäck chose to find points of 

interest within the eye and employ measurements on 

those points as the input to the neural network. 

Instead, our method employs an image of the eye 

directly due to a neural network’s ability to operate on 

imprecise and noisy data. 

Eye Tracking Employing a Neural Network 

An overview of our method for eye tracking using a 

neural network is depicted in Figure 1. The image from 

the webcamera is first downsampled to grayscale to 

reduce complexity in the subsequent stages. The user’s 

face is detected followed by detection of the eye and 

pupil. The image of the eye is cropped from the original 

image and processed to enhance detail and reduce 

complexity. The processed image is sent to the neural 

network where the eye gaze coordinates are estimated. 

As a simplification only one eye was used for tracking. 

 

Face and Eye Detection 

The face and eye were detected using HAAR classifiers. 

The HAAR classifier is a pattern matching technique 

that uses sums of the intensities of the pixels within a 

region to produce a score [9]. The scores for an object 

of interest (i.e. a face or an eye) are encoded 

hierarchically into a template with each scored region 

being broken into smaller scored regions. We used the 

Figure 1. Eye Tracking Employing a Neural Network 



  

OpenCV [2] library for face and eye detection with the 

provided example HAAR classifier templates. The 

detection of the eye was constrained to the region of 

the top-left quadrant of the detected face rectangle to 

improve accuracy. 

Iris Detection and Eye Cropping 

Neural networks perform best when each input has an 

equivalent designation throughout its operation. This 

constraint could not be met if the image of the eye 

were taken from the position found by the HAAR 

classifier.  The nature of the HAAR classifier results in 

the detected position of the eye moving by several 

pixels from one image to the next. To overcome this 

problem we employed the highlight within the user’s 

iris (of the reflection of the computer screen). Iris 

detection was constrained to the region of the detected 

eye and accomplished using simple pattern matching 

against a template image of a pupil taken from a 

grayscale image of a user’s eye. The template matching 

provisions of the OpenCV library were used which 

matches based on the sum of the squares of the 

differences between the intensities of each pixel in the 

template and test region. It was assumed that the iris 

was always present within the detected eye and the 

region with the lowest squared difference was selected 

as the location of the iris. The image of the eye to be 

used as input to the neural network was centered about 

the center of the detected iris. A size of 26x22 pixels 

was chosen for the image of the eye based on pictures 

of the eyes of various users while they sat at a normal 

distance (approximately 75cm) from the screen. 

Eye Image Processing 

Two image processing operations were performed on 

each image of the eye before being sent to the neural 

network, to improve the performance of the eye 

tracker. Figure 2 shows an example of the effects of the 

image processing. The first operation was histogram 

equalization which enhances contrast differences, 

resulting in a brightened sclera and darkened eye 

boundary. 

 

 
Figure 2. Example of Image Processing Effects 

 

The second image processing operation was a 

downsampling (resizing) of the image to a size of 

13x11 pixels using bicubic interpolation. The result was 

a four-fold decrease in the amount of pixels (143 vs. 

572). Without the reduction of the number of pixels 

input to the neural network, the network required 

multiple minutes to complete training with an 

acceptable error. We chose to reduce the number of 

pixels such that the training time was typically less 

than 60 seconds. 

 

Neural Network Gaze Tracking 

The intensity of each pixel in the image of the eye was 

used as an input to the neural network. The network’s 

two outputs corresponded to the X and Y locations of 

the user’s gaze on the screen. Assuming linear 

separability would not pose a problem, we employed a 

feedforward, two-layer neural network. Previous 

implementations of neural network based eye trackers 

used networks with at least three layers [5]. The pixel 

intensities were converted to floating point 

representation for input to the network. The network 

outputs were floating point values representing the X 



  

and Y screen coordinates as a fraction of the screen’s 

relevant dimension (0 representing left or top of screen 

and 1 representing right or bottom of screen). 

Methodology 

All experiments were performed on a commodity laptop 

computer with a built-in webcamera (dual-core 2GHz 

processor, 2GB of RAM, a 1280x800 pixel 13” LCD 

screen and a webcamera with a resolution of 

1280x1024 pixels). The full resolution of the 

webcamera was not available to our experiments; 

instead the images attained were 640x480 pixels. The 

OpenCV library was used for interfacing with the 

webcamera and for all image processing tasks [2]. The 

FANN library was used to implement the neural network 

[1]. A chinrest was employed to immobilize the user’s 

head. The lighting conditions for all experiments were 

similar to those found in an office or classroom. 

Neural Network Training 

The neural network was implemented using the Fast 

Artificial Neural Network Library [1]. Training was 

accomplished by displaying 48 visual markers on the 

screen for the user to look at. The markers were 

organized into eight columns and six rows, evenly 

spaced across the screen and covering the edges and 

corners. At each marker, eight images of the eye were 

recorded and associated with the X and Y coordinates 

of the marker. When all 48 markers had been shown 

the neural network was trained on the data collected. 

For network training we chose the FANN_TRAIN_RPROP 

back propagation training method which was devised 

by Riedmiller et al. and improved by Igel et al. [6,7]. 

Training was concluded when the error dropped below 

0.002. When 40,000 epochs were completed before the 

error dropped below 0.002, the training was restarted 

and the user was shown the markers again. This was 

not a rare occurrence but always attributable to a 

failure in detection of the iris. 

Error Calculation 

The error of the eye tracker was computed in the X and 

Y directions as a percentage of the relevant screen 

dimension. For comparison to existing eye gaze 

trackers, errors in degrees are calculated according to 

the following equation. 

 

𝐸𝑟𝑟𝑜𝑟𝑑𝑒𝑔𝑟𝑒𝑒𝑠 = 𝑎𝑟𝑐𝑡  
 𝐸𝑟𝑟𝑜𝑟𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ∗ 𝑆𝑐𝑟𝑒𝑒𝑛𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝐶𝑚  

2 ∗ 𝑈𝑠𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐹𝑟𝑜𝑚𝑆𝑐𝑟𝑒𝑒𝑛𝑐𝑚

 ∗ 360/𝜋 

 

The distance of the of the subject's eyes from the 

screen was 75 cm, the screen width was 28 cm and the 

screen height was 18 cm. 

 

Results 

Qualitative Results 

Five subjects, consisting of males and females, ages 9 

to 66 (mean=34.8, SD= 20.39) participated in the 

qualitative testing. All but one user had normal vision. 

One user, a 66 year old male, was far-sighted but could 

see the markers well enough with his glasses off to 

participate. Glasses were not permitted in the 

experiments because they disrupted the eye detection. 

None of the users had prior experience with eye 

tracking. The neural network was used to estimate the 

location of each user’s gaze which was drawn as a 

green marker on the screen. All users indicated that 

they felt the green marker was “following” their eye 

movements. Two users reported the green marker 

being exactly where they looked while keeping their 

focus within one quadrant of the screen. 

 



  

All users made the following observations: 

o Head movement affected the accuracy of the gaze 

location considerably 

o The marker was “jumpy” even when keeping their 

eyes still 

o Inability to move the green marker to one or more 

regions of the screen 

The sensitivity to head position was expected because 

of the neural network’s dependence on the appearance 

of the eye in the image and the appearance of the eye 

changes as the user moves his or her head. 

Inconsistencies in finding the iris highlight and noise 

within the webcamera image were the likely cause of 

the “jumpy” marker in the tests. Inspection of the 

image of the eye showed a significant amount of noise 

from the webcamera’s sensor. Changes in this noise 

from frame to frame appeared to be responsible for the 

“jumpy” behavior of the marker even when detection of 

the iris highlight was stable. 

Quantitative Testing 

A preliminary quantitative error assessment was made 

where one user was shown the same set of points used 

in training. After network training, the set of 48 

markers was shown for the subject to follow with her 

eyes. At each marker one image of the eye was used as 

input to the gaze tracker and the error (in both the X 

and Y directions) was recorded. The average errors for 

the X and Y directions were 1.38˚ (±1.01˚) and 1.63˚ 

(±0.75˚). The results show an average accuracy 

improvement of 40-80% compared to previous 

research reported by Bäck [4]. 

Five subjects, consisting of males and females, ages 28 

to 66 (mean=43.6, SD=17.9) participated in a second 

experiment to test the eye tracker’s error. Each user 

was shown 50 points randomly placed around the 

screen. The average errors for all users in the X and Y 

directions were 2.60˚ (±3.43˚) and 2.61˚ (±2.45˚), 

providing the average distance error of 3.68º (±4.24). 

The large errors compared to those from the tests 

using training points suggest that the neural network 

had trouble extrapolating. Adding hidden layers to the 

neural network would possibly rectify this problem. 

Discussion, Conclusion and Future Work 

Analysis 

Our research produced an eye tracker, created with an 

unmodified commodity webcam. The eye tracker works 

with a low enough error (<3.68º) indicated by the 

accuracy results. The users of the system subjectively 

confirmed the responsiveness of the eye tracker. There 

are some areas, listed below, where our methodology 

could be improved, which could enable our eye tracker 

to become more accurate and responsive. 

Better Eye Location 

A large source of error was the inconsistency of the 

location of the iris highlight resulting in an inconsistent 

image being sent to the neural network. More constant 

and useful data could be produced from having the 

image of the eye's position static with respect to the 

placement of the eye socket. 

Head Position 

The largest source of difficulty experienced by the users 

was the sensitivity of the gaze tracker to head 

movements. The orientation and distance of the head 

caused significant errors in the eye tracking. We believe 

this problem can be reduced or eliminated by taking 

measurements on the position of the head and using 



  

them as inputs to the neural network, similar to the 

method employed by Bäck [4]. 

Neural Network Pre-Training 

The training step in our gaze tracker required 30-60 

seconds to complete. Longer training may be required 

to increase the accuracy. One way to reduce user 

training time is to pre-train the neural network using a 

large number of subjects. The neural network would be 

primed for the general appearance of a human eye 

across the various gaze positions. The user would then 

perform training to adjust the neural network to the 

user’s eye. 

 

Higher Resolution Camera 

The camera used in this research was capable of a 

resolution of 1280x1024 pixels but the programming 

interface was limited to 640x480. A higher resolution 

image would improve several aspects of the gaze 

tracker's operation. Location of the eye and iris (and 

possibly pupil) would be improved as would image 

processing including edge detection of the structures in 

the eye (i.e. iris, pupil, and sclera). These effects would 

be beneficial even if the neural network continued to 

use a subsequently resized image. 

 

Conclusion 

We have shown that it is plausible for an unmodified 

webcamera to be used for eye tracking. If further 

investigation overcomes the areas we have outlined, a 

usable eye tracking interface could be implemented 

which requires no special hardware or setup. Such an 

interface would be very useful to the disabled and could 

make existing user interfaces more context aware. 

The results presented in our research indicate a 40% to 

80% improvement of such a device compared to the 

previous work. We believe our work makes another 

step towards making affordable eye-guided computer 

interfaces for the disabled a reality. 
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