
To appear in Proceedings of ACM Conference on Human Factors in Computing Systems

(CHI), Atlanta, GA, 2010

Real-Time Eye Gaze Tracking With an
Unmodified Commodity Webcam
Employing a Neural Network

Abstract

An eye-gaze-guided

computer interface

could enable computer

use by the seriously

disabled but existing

systems cost tens of

thousands of dollars or

have cumbersome

setups. This paper

presents a methodology

for real-time eye gaze

tracking using a

standard webcam

without the need for

hardware modification

or special placement.

An artificial neural

network was employed

to estimate the location

of the user's gaze based on an image of the user's eye,

mimicking the way that humans determine where

another person is looking. Accuracy measurements and

usability experiments were performed using a laptop

computer with a webcam built into the screen. The

results show this approach to be promising for the

development of usable eye tracking systems using

standard webcams, particularly those built into many

laptop computers.

Keywords

Eye tracker, neural network, human computer

interaction, gaze estimation, webcam.

ACM Classification Keywords

H5.2. Input devices and strategies –

Evaluation/methodology.

General Terms

Human Factors.

Introduction

An eye tracking system using an unmodified webcam

could enable severely disabled people to interface with

computers without specialized equipment. It could also

Copyright is held by the author/owner(s).

CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.

ACM 978-1-60558-930-5/10/04.

Weston Sewell

Texas State University-San Marcos

Department of Computer Science

601 University Drive

San Marcos, TX 78666-4616

weston.sewell@gmail.com

Oleg Komogortsev

Texas State University-San Marcos

Department of Computer Science

601 University Drive

San Marcos, TX 78666-4616

ok11@txstate.edu

enable a user interface to be sensitive to the attention

of a user. Sibert and Jacob [8] showed that eye

tracking interfaces are both usable and superior to

mouse driven interfaces for some metrics.

Eye gaze tracking is typically achieved using specialized

equipment which generally costs several times that of a

personal computer. Many laptop computers and LCD

monitors come equipped with built-in webcams

presenting an opportunity for a much wider acceptance

of eye-gaze-driven interfaces. Agustin et al. developed

a webcamera based eye tracking interface but it

required modification to and special placement of the

camera [3]. The aim of this research was to develop

an eye tracker that could use a personal computer's

built-in webcam, without any modification to the

camera hardware.

Conventional methodologies for eye

tracking rely on the tracker’s ability to

detect and track the movement of the

pupil and highlights/reflections of the

eye’s anatomical structures. Because an

unmodified webcamera does not have

the resolution and/or appropriate

lighting to find the pupil, a different

methodology was chosen. We employed

an artificial neural network (ANN) to estimate the

location of the user’s gaze on the screen, based on the

difference in how the user's eye appeared in images

from the camera. The goal of our work was to

determine if this method yields real-time performance

capabilities to warrant further research. The developed

eye tracker was required to provide high degree of

responsiveness and provide an accuracy that was

within an order of magnitude of state of the art

webcamera-based eye trackers.

In [5] the use of an artificial neural network for eye

tracking was shown to be fruitful but the type and

placement of the camera used were not discussed. The

methodology proposed by Bäck [4] closely matches

ours and results in an eye tracker with an accuracy of

between two and four degrees. A notable distinction

from our method is that Bäck chose to find points of

interest within the eye and employ measurements on

those points as the input to the neural network.

Instead, our method employs an image of the eye

directly due to a neural network’s ability to operate on

imprecise and noisy data.

Eye Tracking Employing a Neural Network

An overview of our method for eye tracking using a

neural network is depicted in Figure 1. The image from

the webcamera is first downsampled to grayscale to

reduce complexity in the subsequent stages. The user’s

face is detected followed by detection of the eye and

pupil. The image of the eye is cropped from the original

image and processed to enhance detail and reduce

complexity. The processed image is sent to the neural

network where the eye gaze coordinates are estimated.

As a simplification only one eye was used for tracking.

Face and Eye Detection

The face and eye were detected using HAAR classifiers.

The HAAR classifier is a pattern matching technique

that uses sums of the intensities of the pixels within a

region to produce a score [9]. The scores for an object

of interest (i.e. a face or an eye) are encoded

hierarchically into a template with each scored region

being broken into smaller scored regions. We used the

Figure 1. Eye Tracking Employing a Neural Network

OpenCV [2] library for face and eye detection with the

provided example HAAR classifier templates. The

detection of the eye was constrained to the region of

the top-left quadrant of the detected face rectangle to

improve accuracy.

Iris Detection and Eye Cropping

Neural networks perform best when each input has an

equivalent designation throughout its operation. This

constraint could not be met if the image of the eye

were taken from the position found by the HAAR

classifier. The nature of the HAAR classifier results in

the detected position of the eye moving by several

pixels from one image to the next. To overcome this

problem we employed the highlight within the user’s

iris (of the reflection of the computer screen). Iris

detection was constrained to the region of the detected

eye and accomplished using simple pattern matching

against a template image of a pupil taken from a

grayscale image of a user’s eye. The template matching

provisions of the OpenCV library were used which

matches based on the sum of the squares of the

differences between the intensities of each pixel in the

template and test region. It was assumed that the iris

was always present within the detected eye and the

region with the lowest squared difference was selected

as the location of the iris. The image of the eye to be

used as input to the neural network was centered about

the center of the detected iris. A size of 26x22 pixels

was chosen for the image of the eye based on pictures

of the eyes of various users while they sat at a normal

distance (approximately 75cm) from the screen.

Eye Image Processing

Two image processing operations were performed on

each image of the eye before being sent to the neural

network, to improve the performance of the eye

tracker. Figure 2 shows an example of the effects of the

image processing. The first operation was histogram

equalization which enhances contrast differences,

resulting in a brightened sclera and darkened eye

boundary.

Figure 2. Example of Image Processing Effects

The second image processing operation was a

downsampling (resizing) of the image to a size of

13x11 pixels using bicubic interpolation. The result was

a four-fold decrease in the amount of pixels (143 vs.

572). Without the reduction of the number of pixels

input to the neural network, the network required

multiple minutes to complete training with an

acceptable error. We chose to reduce the number of

pixels such that the training time was typically less

than 60 seconds.

Neural Network Gaze Tracking

The intensity of each pixel in the image of the eye was

used as an input to the neural network. The network’s

two outputs corresponded to the X and Y locations of

the user’s gaze on the screen. Assuming linear

separability would not pose a problem, we employed a

feedforward, two-layer neural network. Previous

implementations of neural network based eye trackers

used networks with at least three layers [5]. The pixel

intensities were converted to floating point

representation for input to the network. The network

outputs were floating point values representing the X

and Y screen coordinates as a fraction of the screen’s

relevant dimension (0 representing left or top of screen

and 1 representing right or bottom of screen).

Methodology

All experiments were performed on a commodity laptop

computer with a built-in webcamera (dual-core 2GHz

processor, 2GB of RAM, a 1280x800 pixel 13” LCD

screen and a webcamera with a resolution of

1280x1024 pixels). The full resolution of the

webcamera was not available to our experiments;

instead the images attained were 640x480 pixels. The

OpenCV library was used for interfacing with the

webcamera and for all image processing tasks [2]. The

FANN library was used to implement the neural network

[1]. A chinrest was employed to immobilize the user’s

head. The lighting conditions for all experiments were

similar to those found in an office or classroom.

Neural Network Training

The neural network was implemented using the Fast

Artificial Neural Network Library [1]. Training was

accomplished by displaying 48 visual markers on the

screen for the user to look at. The markers were

organized into eight columns and six rows, evenly

spaced across the screen and covering the edges and

corners. At each marker, eight images of the eye were

recorded and associated with the X and Y coordinates

of the marker. When all 48 markers had been shown

the neural network was trained on the data collected.

For network training we chose the FANN_TRAIN_RPROP

back propagation training method which was devised

by Riedmiller et al. and improved by Igel et al. [6,7].

Training was concluded when the error dropped below

0.002. When 40,000 epochs were completed before the

error dropped below 0.002, the training was restarted

and the user was shown the markers again. This was

not a rare occurrence but always attributable to a

failure in detection of the iris.

Error Calculation

The error of the eye tracker was computed in the X and

Y directions as a percentage of the relevant screen

dimension. For comparison to existing eye gaze

trackers, errors in degrees are calculated according to

the following equation.

𝐸𝑟𝑟𝑜𝑟𝑑𝑒𝑔𝑟𝑒𝑒𝑠 = 𝑎𝑟𝑐𝑡
 𝐸𝑟𝑟𝑜𝑟𝑝𝑒𝑟𝑐𝑒𝑛𝑡 ∗ 𝑆𝑐𝑟𝑒𝑒𝑛𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝐶𝑚

2 ∗ 𝑈𝑠𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐹𝑟𝑜𝑚𝑆𝑐𝑟𝑒𝑒𝑛𝑐𝑚

 ∗ 360/𝜋

The distance of the of the subject's eyes from the

screen was 75 cm, the screen width was 28 cm and the

screen height was 18 cm.

Results

Qualitative Results

Five subjects, consisting of males and females, ages 9

to 66 (mean=34.8, SD= 20.39) participated in the

qualitative testing. All but one user had normal vision.

One user, a 66 year old male, was far-sighted but could

see the markers well enough with his glasses off to

participate. Glasses were not permitted in the

experiments because they disrupted the eye detection.

None of the users had prior experience with eye

tracking. The neural network was used to estimate the

location of each user’s gaze which was drawn as a

green marker on the screen. All users indicated that

they felt the green marker was “following” their eye

movements. Two users reported the green marker

being exactly where they looked while keeping their

focus within one quadrant of the screen.

All users made the following observations:

o Head movement affected the accuracy of the gaze

location considerably

o The marker was “jumpy” even when keeping their

eyes still

o Inability to move the green marker to one or more

regions of the screen

The sensitivity to head position was expected because

of the neural network’s dependence on the appearance

of the eye in the image and the appearance of the eye

changes as the user moves his or her head.

Inconsistencies in finding the iris highlight and noise

within the webcamera image were the likely cause of

the “jumpy” marker in the tests. Inspection of the

image of the eye showed a significant amount of noise

from the webcamera’s sensor. Changes in this noise

from frame to frame appeared to be responsible for the

“jumpy” behavior of the marker even when detection of

the iris highlight was stable.

Quantitative Testing

A preliminary quantitative error assessment was made

where one user was shown the same set of points used

in training. After network training, the set of 48

markers was shown for the subject to follow with her

eyes. At each marker one image of the eye was used as

input to the gaze tracker and the error (in both the X

and Y directions) was recorded. The average errors for

the X and Y directions were 1.38˚ (±1.01˚) and 1.63˚

(±0.75˚). The results show an average accuracy

improvement of 40-80% compared to previous

research reported by Bäck [4].

Five subjects, consisting of males and females, ages 28

to 66 (mean=43.6, SD=17.9) participated in a second

experiment to test the eye tracker’s error. Each user

was shown 50 points randomly placed around the

screen. The average errors for all users in the X and Y

directions were 2.60˚ (±3.43˚) and 2.61˚ (±2.45˚),

providing the average distance error of 3.68º (±4.24).

The large errors compared to those from the tests

using training points suggest that the neural network

had trouble extrapolating. Adding hidden layers to the

neural network would possibly rectify this problem.

Discussion, Conclusion and Future Work

Analysis

Our research produced an eye tracker, created with an

unmodified commodity webcam. The eye tracker works

with a low enough error (<3.68º) indicated by the

accuracy results. The users of the system subjectively

confirmed the responsiveness of the eye tracker. There

are some areas, listed below, where our methodology

could be improved, which could enable our eye tracker

to become more accurate and responsive.

Better Eye Location

A large source of error was the inconsistency of the

location of the iris highlight resulting in an inconsistent

image being sent to the neural network. More constant

and useful data could be produced from having the

image of the eye's position static with respect to the

placement of the eye socket.

Head Position

The largest source of difficulty experienced by the users

was the sensitivity of the gaze tracker to head

movements. The orientation and distance of the head

caused significant errors in the eye tracking. We believe

this problem can be reduced or eliminated by taking

measurements on the position of the head and using

them as inputs to the neural network, similar to the

method employed by Bäck [4].

Neural Network Pre-Training

The training step in our gaze tracker required 30-60

seconds to complete. Longer training may be required

to increase the accuracy. One way to reduce user

training time is to pre-train the neural network using a

large number of subjects. The neural network would be

primed for the general appearance of a human eye

across the various gaze positions. The user would then

perform training to adjust the neural network to the

user’s eye.

Higher Resolution Camera

The camera used in this research was capable of a

resolution of 1280x1024 pixels but the programming

interface was limited to 640x480. A higher resolution

image would improve several aspects of the gaze

tracker's operation. Location of the eye and iris (and

possibly pupil) would be improved as would image

processing including edge detection of the structures in

the eye (i.e. iris, pupil, and sclera). These effects would

be beneficial even if the neural network continued to

use a subsequently resized image.

Conclusion

We have shown that it is plausible for an unmodified

webcamera to be used for eye tracking. If further

investigation overcomes the areas we have outlined, a

usable eye tracking interface could be implemented

which requires no special hardware or setup. Such an

interface would be very useful to the disabled and could

make existing user interfaces more context aware.

The results presented in our research indicate a 40% to

80% improvement of such a device compared to the

previous work. We believe our work makes another

step towards making affordable eye-guided computer

interfaces for the disabled a reality.

References
[1] FANN. [Online] [Cited: December 2, 2009.]
http://leenissen.dk.
[2] OpenCV. [Online] [Cited: December 2, 2009.]

http://opencv.willowgarage.com.

[3] Low-Cost Gaze Interaction: Ready to Deliver the
Promises. Agustin, Javier San, et al. : ACM, 2009.
Proceedings of the 27th international conference extended
abstracts on Human factors in computing systems. pp.
4453-4458.
[4] Bäck, David. Neural Network Gaze Tracking using Web
Camera. Välkommen till institutionen för medicinsk teknik :
Masters Thesis, 2005.
[5] Non-Intrusive Gaze Tracking Using Artificial Neural
Networks. Baluja, Shumeet and Pomerleau, Dean. 1994,
Technical Report: CS-94-102.

[6] Task-Dependent Evolution of Modularity in Neural
Networks. Igel, Christian, Toussaint, Marc and Hüsken,
Michael. 2002, Connection Science.
[7] A Direct Adaptive Method for Faster Backpropagation
Learning: The RPROP Algorithm. Riedmiller, Martin and
Braun, Heinrich. 1993. IEEE INTERNATIONAL CONFERENCE
ON NEURAL NETWORKS.
[8] Sibert, L.E. and Jacob, R.J. Evaluation of eye gaze
interaction. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. CHI '00. ACM, New
York, NY, 281-288.
[9] Rapid Object Detection using a Boosted Cascade of
Simple Features. Viola, Paul and Jones, Michael. s.l. : IEEE,
2001. Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer
Society Conference on. pp. I-511- I-518 vol.1.

