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Abstract 

There has been increased interest in reliable, non-intrusive 

methods of biometric identification due to the growing emphasis 

on security and increasing prevalence of identity theft. This paper 

presents a new biometric approach that involves an estimation of 

the unique oculomotor plant (OP) or eye globe muscle parameters 

from an eye movement trace. These parameters model individual 

properties of the human eye, including neuronal control signal, 

series elasticity, length tension, force velocity, and active tension. 

These properties can be estimated for each extraocular muscle, and 

have been shown to differ between individuals. We describe the 

algorithms used in our approach and the results of an experiment 

with 41 human subjects tracking a jumping dot on a screen. Our 

results show improvement over existing eye movement biometric 

identification methods. The technique of using Oculomotor Plant 

Mathematical Model (OPMM) parameters to model the individual 

eye provides a number of advantages for biometric identification: 

it includes both behavioral and physiological human attributes, is 

difficult to counterfeit, non-intrusive, and could easily be 

incorporated into existing biometric systems to provide an extra 

layer of security. 

CR Categories: I.6.4 [Simulation and Modeling]: Model 

Validation and Analysis; J.7 [Computers in Other Systems]: 

Process control, Real time. 

Keywords: biometrics, oculomotor plant, eye tracking. 

1 Introduction 

Accurate, non-intrusive, and unforgeable identity recognition is an 

area of increasing concern to just about everyone in today‟s 

networked world, with the need for security set against the goals of 

easy access. The majority of the world‟s population would like 

secure access to their assets without risk of identity theft, yet do 

not want to be subjected to inconvenient or intrusive detection 

systems.  Many of the most-commonly utilized methods for 

identity determination have known problems. For example, 

password verification has demonstrated many weaknesses in areas 

of accuracy (there is no way to verify that the individual typing the 

password is actually its owner, unless a temporal pattern 

recognition system is employed [Joyce and Gupta 1990]), usability 

(people forget passwords [Wiedenbecka et al.]), and security 

(people write them down or create easy-to-hack passwords 

[Schneier 2005]) . 

As a result, techniques of biometric identification, defined as 

methods for identifying persons based on uniquely identifying 

physical or behavioral traits, have been garnering significant recent 

interest [Daugman 2002; Jain et al. 1999; Kasprowski 2004]. The 

potential for advancement in biometric identification methods is 

substantial due to recent improvements in computer processing 

power, database size, and sensor technologies. 

There are a number of methods employed today for biometric 

purposes. Some examples include the use of fingerprints, iris and 

retina scans, face recognition, hand/finger geometry, voice 

recognition and eye movements [Bednarik et al. 2005; Daugman 

2002; Jain et al. 1999; Josephson and Holmes 2002; Kasprowski 

2004] . 

Current biometric identification technologies are somewhat fraud 

resistant, but they are not completely foolproof and may be 

compromised with available technologies. Even though fingerprint 

identification is a popular methodology, such systems have been 

demonstrated to be insufficiently invulnerable in high security 

environments. Several recent studies have shown that it is possible 

to fool fingerprinting systems with common household articles 

such as gelatin [Williams 2002].  

Face recognition systems are still undergoing research to improve 

their precision and recall [Jain et al. 1999; Zhao et al. 2003]. 

Additionally, identical twins (1:10,000 probability), and related 

issues such as family resemblance may bring the reliability of such 

systems into question. It is also possible to use still images and 

video footage of a person to bypass a face recognition system.  

Further disadvantages of many of these methods involve the ability 

to forge replicas – in some cases even causing injury to the owner 

of the body part used for biometric identification.  Eye movements, 

in contrast, constitute a behavioral characteristic which is 

extremely difficult to forge, and which cannot be stolen from an 

individual. 

 The challenge lies in classifying eye movements in such a manner 

that the differences between individuals are more significant than 

changes in a single human‟s behavior over time. In order to do this, 

we turn to physical and behavioral characteristics that are 

relatively constant in an individual human over their lifetime: the 

physical structure and behavior of the muscles that move the eye. 

We propose a person identification method based on the  

Oculomotor Plant Mathematical Model (OPMM) developed by 

[Komogortsev and Khan 2008]), derived from earlier work by 

Bahill [Bahill 1980]. The OPMM models a human eye as a system 

that consists of an eye globe driven by a set of extraocular muscles. 

This system models the anatomical structure of the human eye, 

where each extraocular muscle is driven by a uniquely defined 

neuronal control signal and consists of series elasticity, length 

tension, force velocity, and active tension components. However, 

the specific values for the previously determined OPMM 

parameters were obtained from studies that examined a single 

individual. In this paper, we analyze eye movement traces and 

derive a unique vector of values corresponding to each person over 

a sample set of 41 individuals. We report our results and discuss 
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the challenges and advantages provided by biometric identification 

via an OPMM. 

2 Biometric Identification by Oculomotor Plant 
Mathematical Model 

An overview of our method for biometric identification is depicted 

in Figure 1. The recorded eye movement signal u(t) from a single 

individual is supplied to the “Eye Movement Classification” 

module that classifies eye position signal into fixations and 

saccades. We focus on the detected saccade trajectories, 

represented by Θ(t) in the diagram. The detected saccade 

parameters, the onset and offset coordinates and amplitudes of the 

detected saccades, depicted by h(t), are sent to the second module 

labeled OPMM, which generates simulated saccade trajectories 

represented by the signal x(t). The difference between detected 

saccade trajectories Θ(t) and simulated saccade trajectories x(t) is 

computed by the “Error Function” module and the resulting error 

e(t) is produced. The e(t) signal serves as an input to the 

“Optimization Algorithm” module that provides feedback to the 

OPMM module with the goal of minimizing the error e(t). After 

several iterations, the optimum OPMM parameters in the form of 

an “Oculomotor Coefficients Vector” module are supplied to the 

“Person Identification” module which performs the actual 

identification. Detailed descriptions of each module are provided 

in the sections to follow.   

3 Eye Movement Classification 

We employed the Velocity-Threshold (I-VT) algorithm [Salvucci 

and Goldberg 2000] with threshold of  55º/s in the Eye Movement 

Classification module to split an eye movement recording into 

fixations and saccades. The original I-VT algorithm was modified 

to output such characteristics of an individual saccade as onset 

(𝜃𝑥_𝑜𝑛𝑠𝑒𝑡), offset (𝜃𝑥_𝑜𝑓𝑓𝑠𝑒𝑡 )  coordinates, amplitude (𝜃𝑠𝑎𝑐 _𝑎𝑚𝑝 ) and the 

coordinates of all eye position points between the onset and the 

offset. The outputs of this module are the detected saccade 

trajectories Θ(t) and the onset and offset coordinates and the 

amplitude of the detected saccades, h(t).  Θ(t) is passed as input to 

the Error Function module described in Section 5, and h(t) is used 

as input to the OPMM module described in the following section. 

4 Oculomotor Plant Mathematical Model 

Six extraocular muscles rotate the eye globe in its socket. The 

muscles are innervated by a neuronal control signal generated by 

the brain. During saccades this signal is a pulse step, where pulse 

characteristics are encoded by the velocity command and step 

characteristics are encoded by the positional command [Leigh and 

Zee 2006]. The horizontal OPMM described in [Komogortsev and 

Khan 2008] models all of the described properties of the 

Oculomotor Plant as linear springs or damping components, 

providing approximate values for the parameters describing these 

components. 

5 Error Function 

Saccade trajectories generated by the Eye Movement Classification 

module and the OPMM module are supplied to the Error Function 

module, where the error e(t) in a form of the Root Mean Squared 

Error (RMSE) is computed between the detected x(t) and the 

simulated by the OPMM  ∆𝜃(𝑡) eye position signal. 

When multiple saccades are detected for an individual by the eye 

movement classification algorithm, the average of the RMSEs 

from the detected and simulated trajectories is presented as a final 

e(t). Note that a good approximate solution of the OPMM 

equations creates an eye movement trajectory with a sampling rate 

of 1000Hz [Komogortsev and Khan 2008]; in the case where the 

eye tracking frequency is lower, the signal ∆𝜃 𝑡  is down-sampled 

to match the eye tracking frequency. 

6 Optimization Algorithm  

6.1 Oculomotor Plant Parameters Vector 

The goal of the Optimization Algorithm module is to provide a set 

of better values for the OPMM parameters by minimizing error 

e(t). The OPMM‟s parameters, such as passive elasticity, viscosity, 

series elasticity, length tension, force velocity relationship, height 

and width on the neuronal control signal, are unique for each 

individual. Some of these parameter values were previously 

estimated from a record of just one subject [Bahill 1980]. 

Moreover, some of the parameters such as length tension and 

series elasticity were derived by manual data fitting and hand-

drawn straight line approximations [Bahill 1980]. The values of the 

OPMM parameters derived in this way can be improved to provide 

a much better fit for a specific individual. 

One way to derive more accurate values for the OPMM parameters 

is to employ an optimization algorithm that selects new values for 

the parameters with an objective of minimizing the error e(t).  

It is important to note that some parameters provide higher impact 

than others on the simulated eye movement trajectory [Bahill 

1980]. The ranking of the parameters starting with those providing 

the highest influence on the simulated saccade trajectory is as 

follows: the width of the pulse of the neuronal control signal for 

the agonist muscle (𝐿𝑅𝑝), pulse height of the neuronal control 

signal for the agonist muscle (𝐿𝑅𝑠),  length tension  𝐾𝐿𝑇 ,  series 

elasticity  𝐾𝑆𝐸 ,  passive viscosity of the eye globe (𝐵𝑝) and force 

velocity relationship in the agonist muscle represented by the 

damping component (𝐵𝐴𝐺), combined passive elasticity of the eye 

globe and all extraocular muscles (𝐾𝑝), eye globe inertia (𝐽).  All 

these parameters are selected for actual person identification. 

6.2 Optimization Algorithms & Strategies 

Optimization Algorithms: We employed two optimization 

algorithms to determine optimized values for the OPMM 

parameter vectors (𝐿𝑅𝑝 , 𝐿𝑅𝑠, 𝐾𝐿𝑇 , 𝐾𝑆𝐸 , 𝐵𝐴𝐺 , 𝐾𝑝 , 𝐽) with an objective 

of minimizing the error e(t). 

First, the Trust-Region (TR) algorithm that uses the interior-

reflective Newton method was applied [Coleman and Li 1996]. 

The TR algorithm is an optimization method that searches for a 

better value in an area called the trusted region around the initial 

parameter value. At the start, the region of search is close to the 

initial parameter value and if a better value is found the trusted 

region size is increased, otherwise the size of the search region is 

reduced.  

Additionally, the Nelder-Mead (NM) simplex algorithm was 

applied [Lagarias et al. 1998]. This algorithm employs a simplex of 

n+1 points for a vector y with n dimensions. At the beginning the 

Figure 1. Biometric Identification Model. 
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algorithm builds a simplex around the initial value i by adding a 

percentage value of each component of the vector y. Resulting 

values are employed as elements of the simplex in addition to 

initial value i. As a result new points of the simplex are generated 

until the simplex diameter reaches a specified threshold. 

Optimization Strategies: Two strategies are employed to 

optimize OPMM parameters with the TR and NM  algorithms.  

Strategy 1: the OPMM parameters are optimized sequentially.  An 

already optimized parameter remains in the parameter vector. The 

subsequent parameters are optimized based on the newly optimized 

value of the previous parameter. For example, the value of the Klt 

(after optimization) is employed for subsequent optimization of 

Kse, and the values of both Klt, Kse (after optimization) are 

employed for subsequent optimization Bp, etc. 

Strategy 2: the OPMM parameters are optimized sequentially.  An 

already optimized parameter is saved in the temporal parameter 

vector and the value of this parameter in the original vector is 

restored to the original value. The subsequent parameters are 

optimized based on the original values of the remaining 

parameters. For example, the value of the Klt (after optimization) is 

stored in a temporal vector and the estimation of the Kse occurs 

with the initial value of the Klt. The Kse is stored in the temporal 

vector. The optimization of the Bp is based on the initial values of 

Klt, Kse, etc. When all OPMM parameters are estimated the 

temporal vector holds the data for person identification.  

7 Person Identification 

The input to the Person Identification module consists of a set of 

OPMM parameter vectors estimated for each qualifying saccade. 

The output is an authorization score classifying each saccade as 

belonging to an authorized user or an imposter.  In order to 

perform the classification, we evaluated two different statistical 

algorithms, the K-nearest neighbor (KNN) algorithm, and C4.5. 

KNN is a very simple instance-based learning algorithm, and C4.5 

is a freely-available classifier that builds a decision tree based on 

the concept of information entropy [Shakhnarovich et al. 2005]. 

The eye movement record for an individual consists of multiple 

saccades, and as a result the biometric identification record for 

each individual will consist of a set of OPMM parameter vectors. 

We work with the complete set of per-saccade parameter vectors, 

and split them into a training and a testing set to perform 

identification. 

The following methodology is used to partition each participant‟s 

data into training and testing sets. Each participant data set 

containing exactly two records is arbitrarily declared to be an 

imposter, and included only with the testing set. For each 

participant data set containing three records or more, the parameter 

vectors are inserted into both testing and training sets as authorized 

users; the first record is inserted into the testing set and subsequent 

samples are inserted into the training set. We decided to split the 

sets in this way because of the relatively small amount of test data; 

however, it is possible that we have thereby introduced a 

systematic bias into the training set, and we plan further 

experiments to eliminate this possibility. We also note that samples 

identified as imposters, although not included in the training set, 

are still tracked in order to obtain the correct false acceptance rate 

(FAR) value for available imposters. 

KNN Classification Algorithm: The k-nearest neighbor (KNN) 

algorithm [Shakhnarovich et al. 2005] (in our implementation, 

k=5) is one of the simplest classification algorithms, but is accurate 

and powerful when samples with similar classification tend to 

appear nearby. „Nearby‟ means that the distance between similar 

classifications is generally closer than the distance between 

samples with different classification [Kasprowski 2004]. For each 

oculomotor parameter coefficient, a distance value is obtained and 

recorded into a distance vector. The pseudocode for the algorithm 

can be found in [Komogortsev et al. 2009].  

C4.5 Classification Algorithm: C4.5 is a classification algorithm 

which builds a decision tree from a training set of data, where the 

split at each node maximizes the information gain which represents 

the difference in entropy in the set after and before the split. We 

selected a decision tree classifier because they are robust to noisy 

data and C4.5 because it is widely used and easy to implement. 

The pseudocode for the algorithm can be found in [Komogortsev et 

al. 2009]. 

7.1 Methodology 

Apparatus: The experiments were conducted with a Tobii x120 

eye tracker [Tobii 2009], 24-inch flat panel screen with resolution 

of 1980x1200 pix. Subjects were seated approximately 710 mm 

from the eye tracker. Sampling of eye position coordinates was 

done at 120Hz.  

Accuracy test: An accuracy test was employed prior to the 

experiment providing us with average calibration error and invalid 

data percentage for each subject. The accuracy test is described in 

more detail in [Koh et al. 2009]. 

Eye Movement Invocation Task: The stimulus was presented as 

a „jumping point‟ with vertical coordinate fixed to the middle of 

the screen. The first point was presented at the middle of the 

screen; the subsequent points moved horizontally to the left and to 

the right of the center of the screen with a spatial amplitude of 20, 

providing average stimuli amplitude of approximately 19.3.  The 

jumping sequence consisted of 15 points including the original 

point in the center, yielding 14 saccades for each participant. After 

each jump, the point remained stationary for 1.5s before the next 

jump was initiated. The size of the point was approximately 1 of 

the visual angle with the center marked as a black dot.  Each point 

consisted of white pixels (except for the central black dot), with the 

remainder of the screen left black. 

7.2 Participants 

The test data consisted of 68 student volunteers ages 18-25 with an 

average age of 21.2 and standard deviation of 3.2, 24 males and 44 

females, with normal or corrected-to-normal vision. None of the 

participants had prior experience with eye tracking.  The data 

collection was verified to be accurate by employing two 

parameters, the average calibration error of the right eye and the 

invalid data percentage of the right eye. The data analyzer was 

instructed to discard recordings from subjects with a calibration 

error of > 3.0 , with mean of 1.25, standard deviation of 0.77 and 

invalid data percentage of >50%. Only 41 subject records passed 

these criteria, resulting in mean accuracy of 1.25º (SD=0.77) and a 

mean invalid data percentage of 12.43% (SD=17.22%). Only 

saccades with amplitudes of 17-22º were employed for biometric 

identification. 

7.3 Performance evaluation metrics  

Performance evaluation of a biometric system is measured with the 

following two parameters. 

False Acceptance Rate (FAR) – The ratio of the number of 

imposter samples classified as authentic to the total number of all 

the imposter samples. This metric measures the probability that the 

system incorrectly matches the input pattern of the testing set to a 
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non-matching template in the training set. It measures the percent 

of invalid inputs which are incorrectly accepted.  

False Rejection Rate (FRR) – The ratio of the number of authentic 

samples classified as imposters to the number of all the authentic 

samples. This metric calculates the probability that the system fails 

to detect a match between the input pattern of the testing set and a 

matching template in the training set. It measures the percent of 

valid inputs which are incorrectly rejected. 

8 Results 

We conducted the classification with both the KNN and C4.5 

algorithms on each of the OPMM parameters, and determined that 

the best results were obtained with KNN utilizing the TR algorithm 

with optimization strategy 1 for the length tension coefficient. 

These results improve on previous work in the field by Kasprowski 

[Kasprowski 2004] and Bednarik et al [Bednarik et al. 2005]. C4.5 

did not produce acceptable results with the tested algorithm 

parameters. 

KNN: The smallest FAR and FRR values were achieved with the 

Trust-Region algorithm using optimization strategy 1 for the length 

tension coefficient (KLT). The two next best results were provided 

by the Nelder-Mead algorithm using optimization strategy 1 for the 

passive elasticity coefficient (Kp) and the distance created by all 

parameters (D). The FAR=5.4% and FRR=56.6%  results improve 

on the previously reported results of FAR=9.4% and FRR=63.4% 

given by Kasprowski in 2004 using the KNN algorithm 

[Kasprowski 2004].   

C4.5: Unfortunately, we did not obtain good FAR rates with the 

C4.5 algorithm, even if we accepted an increase in FRR. We 

believe the FAR can be improved by further tuning of the 

algorithm parameters. The best FAR=80% and FRR=0% values 

were achieved by Nelder-Mead with optimization strategy 2. For 

comparison, Kasprowski obtained an FAR of 45.8% and an FRR 

of 12.4% using C4.5 in 2004 [Kasprowski 2004].  

9 Discussion, Conclusions and Further Work 

We have introduced a novel method of biometric identification 

based on the utilization of Oculomotor Plant Mathematical Model 

parameters from horizontal positive saccadic eye movements. We 

evaluated the effectiveness of this method via two different 

statistical classification techniques on a data set of horizontal 

saccadic eye trajectories collected from 41 human participants, and 

achieved promising results using the k-nearest neighbor 

classification algorithm. Our results improve on previous biometric 

methods involving eye movements. 

The OPMM method of biometric identification leverages 

physiological and behavioral characteristics that are unique to each 

individual – the mechanical properties of the eye globe and its 

musculature – rather than simply looking at unprocessed saccadic 

trajectories. The resulting additional information provides further 

structure to the eye movement data and perhaps this is what leads 

to the improved performance of our method over previous work. A 

further advantage of the proposed method is its use of a dynamic 

oculomotor plant model consisting of the eye globe and 

extraocular muscles that is extremely difficult to counterfeit. 

Via our tests, we demonstrated the potential to distinguish 

authorized users from imposters with this technique. However, 

further testing with larger subject pools and different statistical 

classification algorithms is needed to improve on the accuracy 

rates of our method.  Nevertheless, this technique shows promise 

for improving the state of biometric identification. This new 

method could also be easily combined with existing biometric 

identification systems that incorporate digital cameras to scan the 

face or iris, to provide an additional layer of security. In an ever-

more security-conscious and highly networked world, non-

intrusive and unforgeable personal identity-based authorization 

methods will become increasingly critical across a wide range of 

commercial and government applications. 
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