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Abstract 
 

A novel biometrics approach that performs authentica-
tion via the internal non-visible anatomical structure of an 
individual human eye is proposed and evaluated. To pro-
vide authentication, the proposed method estimates the 
anatomical characteristics of the oculomotor plant (com-
prising the eye globe, its muscles and the brain’s control 
signals). The estimation of the oculomotor plant charac-
teristics (OPC) is achieved by analyzing the recorded eye 
movement trajectories via a 2D linear homeomorphic 
mathematical representation of the oculomotor plant. The 
derived OPC allow authentication via various statistical 
methods and information fusion techniques. The proposed 
authentication method yielded Half Total Error Rate of 
19% for a pool of 59 recorded subjects in the best case. 
The OPC biometric authentication has high counterfeit 
resistance potential, because it includes both behavioral 
and physiological human attributes that are hard to re-
produce. 

1. Introduction 
The methods of biometric identification have evolved 

throughout history from basic measurements of head di-
mensions [1] to more advanced techniques involving fin-
gerprints [2], iris [3], and face recognition [4]. But the 
above-mentioned techniques are not completely fraud-
proof since they are based on human body characteristics 
that can be replicated with modern technological advances 
[2-5].  As a result there is a significant need in biometrics 
research to identify methods that are highly counterfeit 
resistant. In this paper we present a method that has poten-
tial to be highly counterfeit resistant because it employs 
non-visible anatomical structures of the human eye. 

The human eye already provides a plethora of infor-
mation useful for biometrics. The physical and behavioral 
properties of the eye are employed in biometrics based on 
the iris [6], face recognition [4], retina [7], periocular in-
formation [8], recordings of the raw eye position, velocity 
signal and pupil dilation [9, 10].   

In terms of its anatomical structure, the eye provides a 
unique opportunity for identification by containing a mul-
titude of anatomical components that together comprise 
the so-called oculomotor plant (OP). These components 

are the eye globe and its surrounding tissues, ligaments, 
six extraocular muscles each containing thin and thick 
filaments, tendon-like components, various tissues and 
liquids [11] (Figure 1). The dynamic and static character-
istics of the OP are represented by the eye globe's inertia, 
dependency of an individual muscle's force on its length 
and velocity of contraction, resistive properties of the eye 
globe, muscles and ligaments, frequency characteristics of 
the neuronal control signal sent by the brain to the extra-
ocular muscle and the speed of propagation of this signal. 
Individual properties of the extraocular muscles vary de-
pending on the role each muscle performs. There are two 
roles: the agonist - muscle contracts and pulls the eye 
globe in the required direction and the antagonist - muscle 
expands and resists the pull [12].  

Numerical estimation of the OP characteristics (OPC) 
could yield a highly counterfeit resistant biometric method 
because OPC represent dynamic behavioral and physio-
logical human attributes that only exist in a living individ-
ual. Biometric authentication via OPC promises to be 
highly repeatable because any type of random stimulus 
ideally would produce the same OPC values. 

Accurate estimation of the OPC is challenging due to 
the secluded nature of the corresponding anatomical com-
ponents, which necessitates indirect estimation and in-
cludes noise and inaccuracies associated with the eye 
tracking equipment, classification and filtering of the eye 
movement signal, mathematical representation of the OP, 
and actual algorithms for numerical estimation of the 
OPC. Eye movement databases that can be readily em-
ployed for the evaluation of the OPC biometrics are not 
available. This work proposes initial solutions to these 
challenges, records several strictly defined eye movement 
datasets, and establishes a very thorough performance 
baseline for OPC biometrics to facilitate future research 
for this identification modality. 

 This paper is organized as follows: section 2 presents 
an overview of biometric authentication via OPC and de-
scribes the required architectural components, section 3 
presents data recording and evaluation procedures, section 
4 presents the results, section 5 provides discussion in-
cluding the limitations of the OPC biometrics, and section 
6 presents conclusions and describes the directions of fu-
ture work. 
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2. Biometric Authentication via Oculomotor 
Plant Characteristics (OPC) 

2.1. Overview 
The developed architecture presented by Figure 2 al-

lows estimating oculomotor plant characteristics (Figure 
1) via recorded eye movement signal (e.g., Figure 3) and 
creating a unique OPC template (e.g., Figure 4) that is 
employed during the user’s enrollment and verification. 

During the enrollment, the recorded eye movement sig-
nal from an individual is supplied to the Eye Movement 
Classification module that classifies the eye position sig-
nal into fixations (movements that keep an eye focused on 
a stationary object of interest) and saccades (extremely 
rapid eye rotations between the points of fixation).  OPC 
can be extracted only from a dynamic eye movement such 
as saccade. Therefore, a sequence of classified saccades’ 
trajectories is sent to the second module labeled Oculomo-
tor Plant Mathematical Model (OPMM), which generates 
simulated saccades’ trajectories based on the default OPC 
values that are grouped into a vector with the purpose of 
matching the simulated trajectories with the recorded ones. 
Each individual saccade is matched independently of any 
other saccade. Both classified and simulated trajectories 
for each saccade are sent to the Error Function module 
where the error between the trajectories is computed. The 
error result triggers the OPC Estimation, module to opti-
mize the values inside of the OPC vector minimizing the 
error between each pair of recorded and simulated sac-
cades. When the minimum error is achieved for all classi-
fied and simulated saccade pairs an OPC 
biometric template representing a user is 
generated. The template consists of a set of 
the optimized OPC vectors, with each vector 
representing a classified saccade. The num-
ber of classified saccades essentially deter-
mines the size of the user’s OPC biometric 
template. 

During a person’s verification, the infor-
mation flow is similar to the enrollment pro-
cedure. In addition, the estimated user bio-
metrics template is supplied to the Person 
Authentication and Information Fusion 
modules to authenticate a user. The Person 
Authentication module accepts or rejects a 
user based on the recommendation of a given 
classifier. The Information Fusion module 
aggregates information related to OPC vec-
tors and works with the Person Authentica-
tion module to authenticate a person based 
on multiple classification methods. The out-
put during user authentication procedure is a 
yes/no answer about claimed user’s identify.  

Detailed description for each module is 

provided next. 

2.2. Eye Movement Classification 
An automated eye movement classification algorithm 

plays a crucial role in aiding the establishment of the in-
variant representation for the subsequent estimation of the 
OPC values. The goal of this algorithm is to automatically 
and reliably identify each saccade’s beginning, end and all 
trajectory points from a very noisy and jittery eye move-
ment signal (e.g. Figure 3).  Another goal of the eye 
movement classification algorithm is to provide additional 
filtering for saccades to ensure their high quality and a 
sufficient quantity of data for the estimation of the OPC 
values. 

A standardized Velocity-Threshold (I-VT) algorithm 
[13] was selected due to its speed and robustness. A com-
paratively high classification threshold of 70°/s is em-
ployed to reduce the impact of trajectory noises at the be-
ginning and the end of each saccade. Additional filtering 
discarded saccades with amplitudes of less than 4°/s, dura-

Figure 1: Oculomotor plant characteristics. 
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Figure 2: Architecture for the biometric authentication via oculomotor plant char-
acteristics. 
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tion of less than 20 ms., and various trajectory artifacts 
that do not belong to normal saccades.  

2.3. Oculomotor Plant Mathematical Model    
The OPMM has to be able to quickly simulate accurate 

saccade trajectories while containing major anatomical 
components related to the OP. 

The linear homeomorphic 2D OP mathematical model 
developed by Komogortsev and Jayarathna [14] is select-
ed. This OPMM, driven by twelve differential equations, 
is capable of simulating saccades with properties resem-
bling normal humans on a 2D plane (e.g. computer moni-
tor) by considering physical properties of the eye globe 
and four extraocular muscles: medial, lateral, superior, and 
inferior recti.  The following advantages are associated 
with a selection of this OPMM: 1) major anatomical com-
ponents are accounted for and can be estimated, 2) linear 
representation simplifies the estimation process of the 
OPC while producing accurate simulation data within the 
spatial boundaries of a regular computer monitor, 3) the 
architecture of the model allows dividing it into two 
smaller 1D models of the form that is described by Ko-
mogortsev and Khan [12]. One of the smaller models be-
comes responsible for the simulation of the horizontal 
component of movement and the other for the vertical. 
Such assignment, while producing identical simulation 
results when compared to the full model, allows a signifi-
cant reduction in the complexity of the required solution 
and allows simultaneous simulation of both movement 
components on a multi-core system. 

A detailed description of the model is beyond the scope 
of this paper and can be found in [14]. Specific OPC ac-
counted by the OPMM and selected to be a part of the 
user’s biometric template are discussed next. 

2.4. OPC vector 
The following subset of nine OPC was empirically se-

lected (Figure 3) as a vector to represent an individual 
saccade for each component of movement (horizontal and 

vertical). Length tension (Klt=1.2 g/°)1 - the relationship 
between the length of an extraocular muscle and the force 
it is capable of exerting, series elasticity (Kse=2.5 g/°) - 
resistive properties of an eye muscle while the muscle is 
innervated by the neuronal control signal, passive viscosity 
(Bp=0.06 g·s/°) of the eye globe, force velocity relation-
ship - the relationship between the velocity of an extraocu-
lar muscle extension/contraction and the force it is capable 
of exerting - in the agonist muscle (BAG=0.046 g·s/°), 
force velocity relationship in the antagonist muscle 
(BANT=0.022 g·s/°), agonist and antagonist muscles’ ten-
sion intercept (NFIX_C=14.0 g) that ensures an equilibrium 
state during an eye fixation at primary eye position, the 
agonist muscle’s tension slope (NAG_C=0.8 g), and the an-
tagonist muscle’s tension slope (NANT_C=0.5 g), eye 
globe’s inertia (J=0.000043 g·s2/°). All tension character-
istics are directly impacted by the neuronal control signal 
sent by the brain and therefore partially contain the neu-
ronal control signal information.  

The remaining OPC to produce the simulated saccades 
are fixed to the following default values: agonist muscle 
neuronal control signal activation (11.7) and deactivation 
constants (2.0), antagonist muscle neuronal control signal 
activation (2.4) and deactivation constants (1.9), pulse 
height of the antagonist neuronal control signal (0.5 g), 
pulse width of the antagonist neuronal control signal 
(PWAG=7+|A| ms.), passive elasticity of the eye globe 
(Kp= NAG_C – NANT_C) pulse height of the agonist neuronal 
control signal (iteratively varied to match recorded sac-
cade’s onset and offset coordinates), pulse width of the 
agonist neuronal control signal (PWANT= PWAG+6). 

2.5. Error Function 
The goal of the Error Function module is to provide 

high sensitivity to any differences between the recorded 
and simulated saccade trajectories. 
                                                             

1 Numbers in brackets represent default values. Following notations 
are employed g – grams, s – seconds, ° - degrees of the visual angle, A – 
amplitude of the recorded saccade.  

Figure 3: Raw eye movement signal with classified fixations and saccades (Left). OPC biometric template (Right). In the middle 
simulated via OPMM saccade trajectories generated with the OPC vectors that provide the closest match to the recorded trajectories 
are presented. 
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The error function is implemented as the absolute dif-
ference between the saccades that are recorded by an eye 
tracker and saccades that are simulated by the OPMM.  

𝑅 = 𝑡! − 𝑠!!
!!!   (1) 

where n is the number of points in a trajectory, 𝑡! is a point 
in a recorded trajectory and  𝑠!  is a corresponding point in 
a simulated trajectory. The absolute difference approach 
provides an advantage over other estimations such as root 
mean squared error (RMSE) due to its higher absolute 
sensitivity to the differences between the saccade trajecto-
ries. 

2.6. OPC Estimation & Biometric Template 
The goal of the OPC estimation module is to provide a 

mechanism for optimizing the values in the OPC vector to 
ensure a minimum error between the simulated and rec-
orded saccade trajectories. The resulting optimum OPC 
vectors create the OPC biometric template for a given user 
(Figure 3). 

The Nelder-Mead (NM) simplex algorithm [15] 
(fminsearch implementation in MATLAB) is used in a 
form that allows simultaneous estimation of all OPC vec-
tor parameters at the same time. Lower and upper bounda-
ries are imposed to prevent reduction or growth of each 
individual OPC value to less than 10% or larger than 
1000% of its default value. Stability degradation of the 
numerical solution for differential equations describing the 
OPMM is used as an additional indicator for acceptance of 
the suggested OPC values by the estimation algorithm. 

2.7. Person Authentication 
The goal of the Person Authentication module is to con-

firm or reject claimed identity based on the comparison of 
the two OPC biometric templates.  

One of the biggest challenges associated with the OPC 
biometrics is the amount of variability present in the esti-
mated OPC. Experiments from which one might infer the 
variability of OPC values are almost non-existent in the 
OP literature. Usually, average numbers are derived from 
strabismus surgeries performed on a limited number of 
patients [16], and even from cat studies [17]. As a result it 
is hard to estimate a priori the amount of variability of the 
values for the OP properties in a large pool of normal hu-
mans. We hypothesize that a substantial amount of varia-
bility is present in the OPC to ensure accurate authentica-
tion. Therefore, authentication methods that allow address-
ing variability concerns are required to make OPC biomet-
rics successful.  

Two classifiers fit this purpose: a) Student’s t-test [18] 
enhanced by voting and b) Hoteling's T-square test [19]. 
Both methods are able to perform acceptance and rejection 
tests. In the acceptance test, two OPC biometric templates 
each in a form of a set of OPC vectors belonging to the 

same individual are compared. In the rejection test, the 
templates are taken from different people. The outcome of 
each test determines the authentication accuracy of the 
corresponding authentication approach. 
2.7.1 Student’s t-test with Voting 

The following Null Hypothesis (H0) is formulated as a 
part of the Student’s t-test given that two biometric tem-
plates, one from the user i and the other from the user j, 
are compared: “H0: There is no difference between the 
templates from the users i and j”. In order to make a con-
clusion about the difference between two users, the statis-
tical significance (plevel) resulting from the test is com-
pared to the significance threshold α. If the resulting plevel 
is smaller than α, the H0 is rejected indicating that the tem-
plates belong to different people. Otherwise, the H0 is ac-
cepted indicating that the templates belong to the same 
person. 

The Student’s t-test approach allows performing an au-
thentication based on a template that contains information 
about single OPC, therefore not taking immediate ad-
vantage of the potential information included in other 
OPC. In this work we enhance the Student’s t-test by con-
sidering voting methods described by Lam and Suen [20]. 
This method accepts a person assuming that for at least k 
OPC the H0 is accepted and rejects a person if H0 is ac-
cepted for less than k OPC. The performance of the Stu-
dent’s t-test with voting is affected by the significance 
threshold and number of votes k. Voting allows to disre-
gard OPC that might violate normality requirement im-
posed by the Student’s t-test. 
2.7.2 Hotelling’s T-square Test 

Hotelling’s T-square test [19] is a multivariate represen-
tation of the Student’s t-test and therefore provides a test 
of the multivariate distribution for the entire OPC vector 
in a template rather than evaluating parameters in an “iso-
lated” or “single” approach where only one OPC is con-
sidered. Hotelling’s T-square is well-suited for assessing 
the performance of OPC biometric authentication across 
all parameters because the true significance level of the T-
square test is most sensitive to mean differences resulting 
from more than one measurement occasion (or experi-
mental condition) and is less affected by discrepancies 
between the covariance matrices attributable to different 
people (or experimental conditions) - as long as the sam-
ple sizes used are large (e.g., number of subject N ≥ 40 or 
number of samples n ≥ 10 in each experimental condition 
[21]). Number of samples can be interpreted as the number 
of recorded saccades in case of the OPC biometrics. 

2.8. Information Fusion 
Information fusion techniques allow improvement of 

the overall accuracy of an authentication method by con-
sidering the information from multiple classifiers [22].  

A decision level fusion technique proposed by Daug-
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man in a form of AND/OR approach [23] was employed 
to combine the decisions of multiple classifiers and verti-
cal/horizontal movement components. For simplicity we 
call this method logical fusion. The AND method only 
accepts an individual if all of the classifiers accept the 
individual, therefore providing an opportunity to reduce 
the combined false acceptance rate and increase the result-
ing false rejection rate. The OR method only accepts an 
individual if one of the classifiers accepts the individual, 
therefore providing an opportunity to increase the com-
bined false acceptance rate and decrease the combined 
false rejection rate. 

3. Experimental Setup 

3.1. Apparatus & Software 
The data was recorded using the EyeLink 1000 eye 

tracker with a sampling frequency of 1000Hz [24]. The 
EyeLink 1000 provides drift free eye tracking with a spa-
tial resolution of 0.01º, and 0.25-0.5º of positional accura-
cy. EyeLink 1000 enables eye to camera distances be-
tween 60 and 150cm and horizontal and vertical operating 
range of 55° and 45° respectively. To ensure high accura-
cy of the eye movement recording a chin rest was em-
ployed. The chin rest was positioned to assure 70cm dis-
tance between the display surface and the eyes of the sub-
ject. The OPC biometrics architecture was implemented in 
MATLAB. All data was processed offline. 

3.1. Participants 
A total of 59 participants (46 males/13 females), ages 

18 – 45 years with an average age of 24 (SD=6.1), volun-
teered for the project.  Mean positional accuracy of the 
recordings averaged between all screen regions was 1.41º 
(SD=1.91º). 

All subjects participated in the two recording sessions 
that presented identical eye movement invocation tasks 
with approximately a 20 minute break between the ses-
sions. Before each recording session, for each subject and 
eye movement invocation task, the eye tracking equipment 
was recalibrated to ensure high positional accuracy of the 
recorded data. 

3.2. Stimuli & Resulting Datasets 
The goal of the stimulus was to invoke a large number 

of vertical and horizontal saccades to allow reliable au-
thentication. The stimulus was displayed as a jumping dot, 
consisting of a grey disc sized approximately 1º with a 
small black point in the center. The dot performed 100 
jumps horizontally and 100 jumps vertically. 

The amplitude of the vertical jumps was 20º for all sub-
jects. However, horizontal jumps had the amplitude of 20º 
for approximately half of the subjects (27) and 30º for 

another half (32). The variation in the horizontal ampli-
tudes allowed assessing classification performance due to 
stimulus changes while fixed vertical amplitude allowed 
testing for the scalability of the OPC biometrics for a larg-
er pool of individuals.  

The horizontal component of movement from horizon-
tal saccades with 20º amplitude and the vertical compo-
nent of movement from the vertical saccades with 20º am-
plitude obtained from first 27 subjects comprised Dataset 
I. The horizontal component of movement from horizontal 
saccades with 30º amplitude and the vertical component of 
movement from the vertical saccades with 20º amplitude 
recorded from the remaining 32 subjects comprised Da-
taset II. Dataset I+II combined data from datasets I and II. 
All datasets are publically available as a part of the Eye 
Movement Biometrics Database v1 [25]. 

The use of just horizontal movement components from 
purely horizontal saccades and vertical component from 
purely vertical saccades allows substantial improvement of 
the quality of data employed for authentication by disre-
garding orthogonal movement jitter. If necessary, such eye 
movement data allows a subsequent check for saccade 
normality by filtering via the corresponding amplitude- 
duration and amplitude- maximum velocity relationships 
(main-sequence relationship) [26] and discard outliers. 
However, the filtering based on the two above mentioned 
relationship was not performed and currently remains a 
goal of the future work. All datasets provide necessary 
amount of subjects and number of recorded saccades for 
application of Hotelling’s T-square test and Student’s t-
test. 

Data quality for Dataset I+II: Mean positional accu-
racy averaged between all screen regions is 1.25º 
(SD=1.45º). Average amount of the invalid data (eye posi-
tional samples not properly detected by the eye tracker) is 
3.16% (SD=5.34%). Average behavioral scores as defined 
in [13] when the raw eye positional data is separated into 
the fixations and saccades by the I-VT algorithm with a 
threshold of 70º/s are: SQnS=108% (SD=50%), 
FQnS=58% (SD=14.7%), and the FQlS=0.95º (SD=0.42º). 

4. Results 
Data analysis: All nine OPC parameters for all datasets 

were screened for multivariate normality and homogeneity 
covariance matrices. Six of the nine parameters displayed 
a continuous normal distribution although excessive posi-
tive skewness and kurtosis were observed. However, the 
degree of skewness and kurtosis was not extreme to the 
degree that the data required a transformation given the 
robust characteristics of Hotelling’s T-square test to viola-
tions of normality [27]. The distribution displayed by Kse, 
BANT, and NANT_C OPCs was Negative Binomial [28] and 
subsequently required a logarithmic transform prior to 
analysis.  
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Authentication Performance: Table I presents per-
formance results. Half Total Error Rate (HTER) metrics as 
defined in [22] is employed for the assessment of the au-
thentication accuracy. “Best” tab presents highest authen-
tication accuracy afforded by selection of an optimal OPC 
subset for each authentication method, significance 
threshold and number of votes in the Student’s t-test. Op-
timal OPC subset can vary for different cases. “Fixed” tab 
presents authentication results for a fixed subset of OPC 
that remains invariant for all authentication methods. 
“Fixed” approach allows assessing the stability of the OPC 
biometrics, and indicates accuracy of performance during 
more practically applicable scenario of use. To select the 
fixed OPC subset principal component analysis (PCA) 
was performed on nine OPC that comprise an OPC vector 
in an effort to reduce the number of parameters needed for 
the authentication. Results of PCA indicate that series 
elasticity (Kse), passive viscosity of the eye globe (Bp), eye 
globe’s inertia (J), agonist muscle’s tension slope (NAG_C), 
and the antagonist muscle’s tension slope (NANT_C) ac-
count for 77% of total variance in the recorded data. These 
parameters were selected to represent fixed OPC subset. 

4.1. “Fixed” Performance  
4.1.1 Impact of Person Authentication Methods 

As shown in rows 1-4 in Table I, Hotelling’s T-square 
test in general produced slightly more accurate authentica-

tion results than Student’s t-test with 
voting for most of datasets under 
consideration. For example, in Da-
taset I+II, the Hotelling’s T-square 
test produced HTER of 24.5% for 
horizontal while Student’s t-test with 
voting produced HTER of 25%. For 
vertical data the difference between 
tests was 8%. 
4.1.2 Impact of Logical Fusion 
Impact 

According to rows 5-12 in Table I, 
application of logical fusion has a 
capability to provide an increase in 
the authentication accuracy when 
compared to pure person authentica-
tion methods. For example, in Da-
taset I+II, Hoteling’s T-square test for 
the horizontal component produced 
HTER of 24.5% and for the vertical 
component produced HTER of 
32.5%; however, logical fusion re-
duced the HTER to 22.5% (row 7).     
4.1.3 Impact of Stimuli Properties 

The results from horizontal data 
presented in row 1 and 3 of Table I 
indicate lower authentication accura-
cy for the saccades of larger ampli-

tudes. We hypothesize that such phenomena can be ex-
plained by the increased amount of express saccades and 
also undershoots and overshoots [26] that occur as a part 
of the person’s reaction to the large amplitude stimuli. 

For the Dataset I+II, where different stimulus ampli-
tudes were used for different subject groups, the accuracy 
of authentication was better than the average of HTERs 
produced by each dataset separately.  

Both results suggest that stimulus amplitude does im-
pact the results of biometric authentication, however 
slightly.  Additional research is required to provide an 
additional clarification. 
4.1.4 Scalability of the OPC biometrics 

The results from the vertical data presented in row 2 
and 4 of the Table I indicate the scalability potential of the 
OPC biometrics, because such data considers saccades 
recorded in a response to the same stimulus amplitude. 
When the amount of subjects was increased from 27 (or 
32) to 59 the resulting HTER of the Hotelling’s T-square 
test was better than the average between the HTERs pro-
duced by the smaller groups. The HTER produced by the 
Student’s t-test in the combined dataset case was higher 
than the HTERs of each individual dataset indicating the 
lower tolerance of this test to the increase in the number of 
people. 
4.1.5  Receiver Operating Characteristics Curve 

Figure 4 presents a Receiver Operating Characteristics 

Table I. Performance of the OPC biometrics for various authentication methods and da-
tasets expressed in the HTER (numbers show percentages). In the Methods & Data De-
scription column T represents Hotelling’s T-square test and S represents Students t-test 
with voting. (hor) represents data from horizontal movement component of horizontal sac-
cades, (ver) represents data from vertical movement of vertical saccades. OR and AND 
represent logical fusion techniques. Note that for “Fixed” results related to Students t-test 
with voting represent values obtained with 3 votes (7 votes in case of horizontal fusion). 
Significance threshold α for Students t-test and Hotelling’s T-square test was 0.1. For 
“Best” results the optimal number of votes (ranging from 1 to a total number of OPC used 
in authentication vector) and significance threshold (ranging from 0.1 to 0.9) was selected. 

Method'&'
Data'

Description!

Selection! Best! Fixed!

Dataset! I! II! I+II! I! II! I+II!

1! T(hor)! 18.5! 26! 23! 26! 28.5! 24.5!

2! T(ver)! 25.5! 28! 26! 28.5! 35.5! 32.5!

3! S(hor)! 19! 24! 21.5! 24.5! 30.5! 25!

4! S(ver)! 23! 28! 29.5! 36.5! 34.5! 40.5!

5! T(hor)!OR!S(hor)! 18.5! 24.5! 20.5! 22! 29! 26!

6! T(ver)!OR!S(ver)! 22! 24.5! 25! 29.5! 34! 34.5!

7! T(hor)!OR!T(ver)! 19! 18.5! 19! 26! 22.5! 22.5!

8! S(hor)!OR!S(ver)! 19! 21.5! 22.5! 31.5! 31! 25.5!

9! T(hor)!AND!S(hor)! 16! 28! 23! 25.5! 28.5! 24.5!

10! T(ver)!AND!S(ver)! 26! 28! 26! 27! 35.5! 32!

11! T(hor)!AND&T(ver)! 24! 38.5! 36.5! 27.5! 41! 33.5!

12! S(hor)!AND!S(ver)! 22! 24.5! 24! 31! 30.5! 28!

!

Method'&'
Data'

Description!

Selection! Fixed! Fixed!

Dataset! I! II! I+II! I+II! II! I+II!

1! T(hor)! 19/33! 13/44! 10/39! 26! 28.5! 24.5!

2! T(ver)! 24/33! 21/50! 23/42! 28.5! 35.5! 32.5!

3! S(hor)! 27/22! 33/28! 28/22! 24.5! 30.5! 25!

4! S(ver)! 36/37! 35/34! 42/39! 36.5! 34.5! 40.5!

5! T(hor,ver)! 100/0! 56/44! 100/0! 50! 50! 50!

6! S(hor,ver)! 20/22! 24/25! 22/27! 21! 24.5! 24.5!

7! T(hor)!OR!S(hor)! 22/22! 30/28! 25/27! 22! 29! 26!

8! T(ver)!OR!S(ver)! 29/30! 34/34! 37/32! 29.5! 34! 34.5!

9! T(hor)!OR!T(ver)! 26/26! 20/25! 21/25! 26! 22.5! 22.5!

10! S(hor)!OR!S(ver)! 33/30! 31/31! 26/25! 31.5! 31! 25.5!

11! T(hor)!AND!S(hor)! 18/33! 13/44! 10/39! 25.5! 28.5! 24.5!

12! T(ver)!AND!S(ver)! 11/37! 21/50! 22/42! 27! 35.5! 32!

13! T(hor)!AND&T(ver)! 7/48! 4/78! 3/64! 27.5! 41! 33.5!

14! S(hor)!AND!S(ver)! 32/30! 30/31! 27/29! 31! 30.5! 28!

15! T(hor,ver)!AND!S(hor,ver)! 23/26! 28/25! 28/27! 24.5! 26.5! 27.5!

16! T(hor,ver)!OR!S(hor,ver)! 40/37! 35/35! 37/32! 38.5! 35! 34.5!

!
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(ROC) curve. The results include a mix of best performing 
methods with and without fusion according to the corre-
sponding HTER for the data from Table I.  

4.2. “Best” Performance  
In general, optimal selection of OPC subset, significance 
level, and number of votes for the Students t-test resulted 
in improvement of accuracy among all methods, ultimate-
ly obtaining the minimum HTER of 19% for T(hor) OR 
S(hor) method. However, general performance trends re-
lated to impact of different authentication methods, stimu-
li, and fusion remained similar to the “Fixed” scenario. 
The scalability trend was similar to the “Fixed” scenario 
as well.   

5. Discussion 
Recording Equipment: The OPC biometrics explora-

tion done in this work was conducted on a very accurate 
eye tracking equipment with a very high sampling rate. 
Subjects were positioned in a chinrest to avoid potential 
signal accuracy issues. Additional research is required to 
understand the tradeoffs between the authentication accu-
racy of the OPC biometrics and equipment’s sampling 
rate, positional accuracy, and freedom of head movements. 

Stimulus: The jumping dot stimulus employed in this 
work was purposefully fixed in amplitude and exhibited a 
large number of jumps. Such fixed experimental parame-
ters allowed establishing a baseline for the OPC biometric 
performance in an environment that is close to ideal. 
However, additional work is required to understand the 
OPC biometric performance for saccades that have ran-
domized amplitudes, various spatial placement, and differ-
ent quantities. 

OPC Estimation Speed: The estimation of an OPC 
vector containing nine parameters that provided the small-

est error between the recorded and simulated saccade re-
quired on average 1500 saccade trajectory simulations that 
took approximately 15 minutes on an Intel Q6600 proces-
sor, using one core and assuming MATLAB implementa-
tion of the fminsearch function. However, the OPC bio-
metrics architecture is highly parallelizable and distributa-
ble, with each individual saccade trajectory easily pro-
cessed by a separate core. Additionally, implementation in 
a programming language such as C/C++ might speed up 
the estimation process. It is possible that the reduction in 
the number of iterations might provide the results compa-
rable to the ones that were obtained; however, such possi-
bility will be explored in the future work. 

The linear design of the OPMM makes it possible to 
seek analytical solutions to the differential equations de-
scribing the model, therefore providing an opportunity for 
the direct extraction of the OPC from saccade trajectories. 
However the derivation of the analytical solution is very 
challenging. 

Stability of the OPC trait: The time interval between 
the recording sessions for each subject was approximately 
20 min. Such a time difference provides extremely limited 
insight in terms of the stability of the OPC biometrics over 
a longer time span and impact of such factors as stress, 
fatigue, aging and illness.  Additional research needs to be 
conducted to explore the long-term stability of the OPC 
trait. 

Sensitivity of Hotelling’s T-square Test: The number 
of subjects employed in this work is 59, which satisfies the 
sample size requirements for application of the Hotelling’s 
T-square Test. However, if larger sample sizes are untena-
ble, the Box test or Box’s M [29] can be conducted as a 
precursor to conducting Hotelling’s T-square. The Box test 
uses an approximation to the F-statistic, and should the 
test be rejected, a correction can be made to adjust for 
unequal covariance matrices thereby ensuring accurate 
hypothesis tests. For example, when applied to the datasets 
discussed in this paper, the Box test was rejected indicat-
ing heterogeneous covariance between subjects (i.e. a lack 
of tenability of the assumption of compound symmetry). 
Due to the lack of compound symmetry in covariance ma-
trices between subjects, we compared the results of Ho-
telling’s T relative to an adjusted F-test (i.e., corrected for 
non-sphericity). The results were the same and therefore 
the violation of homogeneity of covariance matrices did 
not adversely impact the sensitivity of the Hotelling’s T 
statistical test employed in this work, indicating that Ho-
telling’s T-square Test was the right choice as a matching 
test for comparison of OPC biometric templates. 

6.  Conclusion and Future Work 
This paper outlined and explored a novel biometrics ap-

proach that allows person identification via the internal 
non-visible anatomical structure of an individual human 
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eye. Given the limited pool of 59 volunteers, the proposed 
biometrics method operating in the authentication mode 
ultimately achieved the lowest HTER of 19% with the 
optimal sub-set of the oculomotor plant characteristics. 

Among statistical methods employed for comparison of 
ocular templates the multivariate Hotelling’s T-square test, 
in general, provided higher accuracy across the nine pa-
rameters when compared to the Student’s t-test, indicating 
a superiority of multivariate approach to a singular evalua-
tion strategy given the complex nature of the oculomotor 
plant. Logical fusion methods were able to achieve slight-
ly higher authentication accuracy than when no fusion was 
performed. An increase in the number of subjects from 27 
to 59 did not decrease the authentication performance with 
the Hotelling’s T-square test, however when Student’s t-
test was employed the authentication accuracy decreased.  

It was concluded that stimuli properties impact the au-
thentication accuracy, i.e., stimulus that evoked large am-
plitude saccades produced larger authentication errors. 

It is important to conduct more work to ensure OPC bi-
ometrics independence from equipment calibration biases, 
because this is one of the main factors degrading accuracy 
of the authentication performance. In fact our ongoing 
work includes developing a correction equation for sys-
tematic error generated from instrumentation. Additional 
work should be performed to allow faster estimation of the 
OPC values. The stability of biometrics needs to be veri-
fied against a more diverse array of stimuli, eye tracking 
equipment, larger group of subjects and a longer time 
span. To address such issues, we are currently working on 
a simulation approach using Bayesian probabilistic model-
ing and Markov chain Monte Carlo methods that will al-
low us to generate, test and evaluate the OPC biometric 
performance under a variety of conditions likely to be en-
countered in real world scenarios of use of our approach. 
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