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Abstract 

The paper presents a reading-based eye movement bi-

ometrics model. The model is able to process passages of 

text and extract metrics that represent the physiological 

and behavioral aspects of the eye movements in reading. 

When tested on a database of eye movements from 103 

individuals, the model yielded the Equal Error Rate of 

10.2%. The proposed method performed better in the tem-

plate-aging scenario than comparable eye move-

ment-driven biometrics methods.      

1. Introduction

Security is a very important and desired aspect of human

lives [1]. Security related to personal information is espe-

cially important considering the rapid development of the 

Internet and related technologies [2] that potentially give an 

opportunity to intruders to remotely get access to the large 

amounts of sensitive information [3-6], especially if the 

passwords guarding this information are weak. The science 

of biometrics strives to solve a problem that is presented by 

passwords – the necessity to remember potentially random 

pieces of data for authentication. User authentication via 

biometric technology occurs not based on what a person 

remembers (e.g., password) or what a person has (e.g., 

credit card) but based on the traits that essentially represent 

a person. Remarkably most sciences studying humans such 

as psychology [7] and sociology [8] try to understand and 

measure the similarities between people while the science 

of biometrics strives to find traits that are different between 

the individuals and make a recognition decision based on 

those traits [9]. 

Traits employed for biometric authentication can be 

loosely separated into two groups: a) physiological and b) 

behavioral. The examples of the physiological traits are [9] 

fingerprint, iris, hand, face, ear, DNA [10], and the exam-

ples of behavioral traits are [9] voice, gait, keystroke dy-

namics, and signature. 

Eye movements contain both the physiological and the 

behavioral traits and can be collected on the equipment 

employed for the iris recognition [11]. Thus, they can be 

used to address some of the spoofing vulnerabilities of the 

cotemporary iris systems [12]. For example, related re-

search demonstrates the robustness of eye movement 

driven biometrics to iris-print attacks [13].  

Previous research indicated susceptibility of the eye 

movement biometrics to the template aging effects [14]. 

This is an important problem that should be solved if the 

time between the enrollment and the actual authentication 

is more than a few days. The text-reading model presented 

in this paper strives to improve the resistance of the eye 

movement driven biometrics to the template-aging effects 

by analyzing the eye movements and their characteristics in 

the direct response to text structure during the task of 

reading a text. The results indicate that the proposed ap-

proach provides better authentication accuracy in the tem-

plate-aging scenario than the previously developed 

state-of-the-art approach.  

1.1.  Previous work 

Eye movement driven biometrics methods can be loosely 

separated into two categories: a) based on the raw posi-

tional data [15, 16], b) based on the fixations/saccades and 

their characteristics [17-21]. Fixations are defined as eye 

movements that keep an eye stable toward the object of 

interest, thus providing high acuity visual data about the 

object to the brain. Saccades are rapid rotations of the eye 

that move it from one fixation spot to the next. 

The works in the second group of eye movement-driven 

biometrics methods can be divided into the following 

sub-categories: a) methods based on the physiology of the 

eye muscles and the eye globe derived from the saccades 

via mathematical modeling of the eye, e.g., the Oculomotor 

Plant Characteristics (OPC) approach [18]; b) methods 

based on the deployment and the representation of the 

visual attention, given the specific type of stimulus, e.g., the 

Fixation Density Maps (FDM) approach [19]; c) methods 

based on the corrective eye movements, e.g., the Complex 

Oculomotor Behavior (COB), [20]; and d) mixed approach 

where a variety of fixation and saccade related character-

istics are considered, e.g., the Complex Eye Movement 

(CEM-B) [21] approach. 

The text reading approach proposed in this work is most 

similar to the CEM-B approach. Analogous to the CEM-B, 

the proposed method creates a biometric template from 

distributions of characteristics of fixations and saccades, 
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but it puts into a biometric template only fixations and 

saccades that are exhibited as a direct response to the text 

structure. In addition, the proposed approach incorporates 

text specific metrics, i.e., related to the specific lines of text 

and words. 

2. Text Reading Model (TRM) 

2.1. Reading Text 

When a person reads a piece of text, she or he tries to 

extract the meaning of the presented information, moving 

the eyes in a sequence of fixations and saccades that occur 

to overcome the anatomical limitation of the human vision, 

i.e., eyes can see with high quality only limited portions of 

the text. People normally read text line by line connecting 

pieces of information represented by the individual words 

into the global meaning represented by a text as a whole. 

Low-level cognitive processes are responsible for extract-

ing the information from the individual words while high-

er-level cognitive processes are responsible for the for-

mation of the overall meaning encoded in the lines of text 

[22]. 

Given a substantial amount of previous research re-

garding how people read text [22] we wanted to create a 

text reading model that employs metrics related to the text 

structure that potentially increase the amount of infor-

mation that is extracted from the eye movements and stored 

in a biometric template representing a person. 

To be able to take advantage of the text structure and the 

eye movements associated with it, it becomes very im-

portant to establish one to one correspondence between 

individual lines of text/words and to identify specific eye 

movements that correspond to these structures. Figure 1a 

illustrates the challenges that should be solved, i.e., fixa-

tions (represented by circles) are detected for the wrong 

lines of text and words. There are multiple reasons for such 

positional inaccuracies including but not limited to the 

calibration biases [23] caused by the eye image distortions 

due to squinting, excessive eye moisture, and specific eye 

shape. 

The next subsection describes the approaches for pro-

cessing the eye movements in response to the text stimulus 

including the commonly used Area-of-Interest (AOI) ap-

proach and the Pass-Based approach, which we propose in 

this work. 

2.2.  Processing Eye Movements for a Text 

2.2.1 AOI-based approach 

The most common approach employed in classifying eye 

movements in response to the text stimulus is Are-

as-of-Interest (AOI)-based [24], which is usually done in 

the following stages: 

1. Divide the image of the text into a set of AOIs with 

each AOI corresponding to one word. 

2. Associate the fixations detected within a specific AOI 

as reading fixations for the AOI represented word. 

The disadvantage of the AOI-based approach is the re-

quirement of the larger than normal font size for the words, 

larger than normal between the lines intervals, and eye 

movement records of high quality where fixations are di-

rectly positioned on the words that they correspond to.  

2.2.2 Pass-Based approach 

However, every day reading conditions, where eye 

movement-driven biometric techniques could be poten-

tially applied, frequently are presented with fonts that are 

not large and between line intervals that are not excessive. 

To cope with the issues that arrive as a result of the reading 

conditions that are relatively close to normal, we propose 

the Pass-Based approach.  

Terminology 

Pass is defined as a sequence of fixations and saccades 

that an individual makes during reading a line of a text. 

Passes create a robust structure that allows reliable eye 

movement analysis with respect to the lines of text even in 

the cases of smaller fonts and between the line intervals that 

is shown on Figure 1b where passes are presented by pol-

ylines.  

Figure 1.This is an example of the case when the AOI-based 

approach does not give a correct result, but the Pass-Based ap-

proach does. Both pictures are from the same record, calibration 

error: average 0.58 degrees, maximum 1.04 degrees. This case is 

common. 

   

a)  AOI-based approach 

b) Pass-based approach 
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What is also important is that the pass structure allows 

processing even eye movement recordings where a vertical 

shift of the data is present (e.g., due the low positional 

accuracy) and the detected fixations are positioned on a 

wrong line of the text. 

Local return saccade is a saccade that occurs when the 

eyes transition to the next line for reading. Global return 

saccade is a saccade that occurs when the eyes transition to 

the beginning of the page from the bottom of the page after 

the user is done reading a page of text. Hop is the move-

ment of the eyes between two consequent fixations within a 

pass. Hop is usually represented by a single saccade; 

however it can be also a saccade toward the next word 

together with a subsequent corrective saccade in case the 

word was initially under/overshot by the eyes. There are 

multiple reasons for saccade dysmetria with fatigue being 

one of those reasons [25]. 

Obtaining passes 

The passes are obtained by separating the eye movement 

record by local/global return saccades. The set of all of the 

fixations and saccades between two local return saccades or 

a local and global return saccade is a pass. Passes are as-

sociated with lines based on their chronological order with 

any shift from the intended position that the AOI method 

cannot do. Double reading passes are filtered out; they are 

recognized by being closer than a threshold value to each 

other in vertical coordinates. The threshold used in the 

presented work is 0.3 of the maximum vertical size of the 

line. 

Once the pass is associated with an appropriate line of 

text, the fixations detected for this line are matched with the 

corresponding words by matching their horizontal coordi-

nates with horizontal coordinates of a particular word in the 

same way as for the AOI-based approach. This means that 

the Pass-Based approach can suppress the vertical shift of 

fixations from corresponding words when the AOI-based 

approach cannot provide this feature. Due to words having 

a smaller vertical size compared to the horizontal size, the 

vertical shift causes fixation and word position mismatch 

with a higher probability than for the horizontal shift for the 

same level of positional accuracy. 

Data filtering 

Blinks and invalid eye positional samples are filtered out 

by a special blink filtering algorithm that is based on the 

blink detection algorithm employed by the EyeLink vendor 

[26]. The main difference from the original algorithm is the 

exclusion of any saccades and fixations that were involved 

in a blink. All eye movements that were not involved in any 

pass were also dropped out of the consideration of being a 

part of the biometric template.  

2.3. TRM metrics 

Following set of metrics depicting different aspects of the 

reading process represent the Text Reading Model (TRM) 

that we propose. 

2.3.1  Hop-related metrics 

The perceptual span of a person varies from one indi-

vidual to another [22], so hops that reflects eye movements 

in reading from one location in the text to the next are 

directly affected by the size of the perceptual span.  

M1. Hop Horizontal Amplitude – horizontal distance 

between two adjacent fixations (deg); 

M2. Hop Vertical Amplitude – vertical distance be-

tween two adjacent fixations; 

M3. Fixation Duration (ms); 

M4. Hop Duration (ms); 

M5. Hop Mean Horizontal Velocity – mean horizontal 

eye velocity during a hop (deg/s); 

M6. Hop Mean Vertical Velocity – mean vertical eye 

velocity during a hop (deg/s);  

M7. Hop Mean Vectorial Velocity – mean vectorial 

eye velocity during a hop (deg/s); 

M8. Hop Peak Horizontal Velocity – peak horizontal 

eye velocity during a hop  (deg/s); 

M9. Hop Peak Vertical Velocity – mean vertical eye 

velocity during a hop  (deg/s); 

M10. Hop Peak Vectorial Velocity – mean vectorial eye 

velocity during a hop  (deg/s); 

M11. Ratio of the Fixation Duration to the duration of 

the antecedent Hop (ms); 

M12. Ratio of the Fixation Duration to the duration of 

the subsequent Hop (ms); 

2.3.2 Pass-related metrics 

Metrics in this category aim to represent the individuality 

of the perceptual span, cognitive abilities related to the 

speed of reading, and individual features of the eye that can 

cause distortions and shifts after a calibration procedure. 

Moreover, fixation-based metrics are easier to obtain be-

cause fixations are longer than saccades – 200 ms vs. 80 ms 

on average, plus fixation can be reliably detected from the 

raw eye position data captured even from an inexpensive 

eye trackers.  

M13. Ratio of Pass Amplitude (distance between the 

horizontal coordinates of left and right fixations) to the 

Length of Text Line corresponding to a pass; 

M14. Ratio of Pass Total Length (summation of the 

amplitudes of all hops for a pass) to the Length of Text Line 

corresponding to the pass; 

M15. Number of Fixations in a Pass; 

M16. Total Time of a Pass (ms); 

M17. Pass Offset – vertical distance between a Pass and 

the corresponding line of text (deg); 
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2.3.3 Fixation-related metrics 

The potential of biometric performance of this set of 

metrics is based on the individuality of the perceptual span 

and cognitive abilities related to the speed of reading. 

First fixation for a line of text 

These metrics represent the positional accuracy of the 

first fixation for a line of text. 

M18. First Fixation Horizontal Offset for a Line of Text 

– horizontal distance between the first fixation of a pass and 

the beginning of the first word in a line of text (deg). 

M19. First Fixation Vertical Offset for a Line of Text 

(deg). Same as M18, but only vertical distance is consid-

ered. 

First fixation for a word 

These metrics represent the positional accuracy of the 

first fixation for a word of text and speed of reading. 

M20. First Fixation Horizontal Offset for a Word – 

horizontal distance between the first fixation directed to a 

word and the beginning of that word (deg). 

M21. First Fixation Vertical Offset for a Word (deg). 

Same as M20 only vertical distance is considered. 

M22. First Word Fixation Duration – duration of the 

first fixation on a word (ms). 

M23. Gaze Duration for a Word – sum of durations of 

all eyes fixations for a word (ms); 

2.3.4 Return saccade-related metrics 

This set contains metrics related to the local return sac-

cades (LRS). The LRS is one of the longest saccades in 

reading. Saccades in general contain substantial amounts of 

biometric information [21]. 

M24. LRS Mean Horizontal Velocity - mean horizontal 

eye velocity during a return saccade (deg/s); 

M25. LRS Mean Vertical Velocity (deg/s); 

M26. LRS Mean Vectorial Velocity (deg/s); 

M27. LRS Peak Horizontal Velocity (deg/s); 

M28. LRS Peak Vertical Velocity (deg/s); 

M29. LRS Peak Vectorial Velocity (deg/s); 

M30. LRS Duration (ms); 
 

Obviously, this set of metrics has some redundant in-

formation. For example, vectorial saccade velocity over-

laps with the horizontal and vertical saccade velocities. To 

avoid degradation of the biometric performance by such 

redundancy, only a subset of features is taken in the final 

biometrics template. Section 3.5.1 describes the final fea-

ture selection process.  

3. Experimental Methodology 

3.1. Apparatus 

An EyeLink 1000 eye-tracker in a tower mount setup 

that consisted of the camera hardware and chin and fore-

head rest was used to record the eye movements [26]. The 

eye tracker was set in a monocular mode (left eye was 

recorded) and 1000 Hz sampling frequency. The 

eye-tracker‟s Host PC was connected to a MS Windows 

Display PC with 22-inch LCD monitor with an active dis-

play area of 474x297mm and the resolution of 

1680x1050pix. The distance from the participant‟s eyes to 

the display was 550mm. The primary eye position of sub-

ject corresponded to the center of the screen with a vertical 

offset of 35 mm above the eye level.  

3.2. Stimulus & Procedure 

During a recording day each participant was recorded in 

two sessions. The text for the reading stimulus was taken 

from Lewis Carroll‟s poem, “The Hunting of the Snark,” 

chosen for its difficult and nonsensical content, forcing 

readers to progress slowly and carefully through the text, 

even in repeated readings. For each text recording, subjects 

were limited to 1 minute of reading. To reduce learning 

effect, subjects were given a different excerpt from the text 

for each recording session. Each excerpt contained 6 

quatrains that consisted of 24 lines of text. 

The text was displayed in Times New Roman 20 pt. size 

bold font and was single-spaced. The mean letter interval 

for each piece of text was approximately 0.50 degrees of 

the visual angle. The height of the line of the text was 0.92 

degrees of the visual angle. 

It must be noted that the text recordings for each session 

were a part of a larger experiment where subjects per-

formed various eye movement tasks with several periods of 

rest to reduce possible fatigue effects. The time lapse be-

tween the text recordings conducted during the same day 

was approximately 20 minutes. Several other tasks and 

brief rest periods between those tasks were conducted in 

addition to text recordings. The total duration of all tasks 

and periods of rest during both recording sessions did not 

exceed 1 continuous hour. 

3.3. Participants & Recorded Data Quality 

3.3.1 Same Day test 

Eye movement data was processed from 103 partici-

pants, 51 males and 52 females, ages 18 – 43 with an av-

erage age of 21.3±3.9, recorded over two sessions labeled 

as S1 and S2. The institutional review board approved the 

study, and all subjects provided informed consent. Data 

recorded from these participants had the average calibra-

tion error of 0.48°±0.17 and the maximum calibration error 

of 1.03°±0.46. The average recorded data validity was 

95.5%±5.2. 

3.3.2 Template Aging test 

The same 103 subjects came back for a template aging 

experiment that took place approximately one month after 

the initial recording day.  

Three major factors can potentially contribute to the 
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template-aging effect: behavioral, short-term physiologi-

cal, e.g. fatigue [25] and long-term physiological, e.g aging. 

There are evidences that aging does not affect saccadic 

behavior [27], which provides the highest biometric accu-

racy. Due to this reason we assume that actual muscle tissue 

aging does contribute to the degradation in performance 

found in our work. We consider one-month time interval 

between the recordings reasonable to see template-aging 

effects due to the behavioral and short-term physiological 

variability. Changes in the neuronal control signal sent to 

the extraocular muscles can be an example of short-term 

physiological variability. 

Similar to the Same Day test experiment the participants 

were recorded over two sessions labeled S3 and S4 and 

were conducted on the same day. Data recorded on that day 

had the average calibration error of 0.44°±0.15 and the 

maximum calibration error of 0.93°±0.37. The average 

recorded data validity was 95.0%±6.7. 

It must be noted that records employed in the Same Day 

test and Template Aging test experiments came from the 

larger experiment where 335 individuals came for the Same 

Day test recordings and only 103 came back for the Tem-

plate Aging test. For consistency purposes, only data from 

these 103 individuals who participated in both the Same 

Day test and the Template Aging test days of recordings 

were considered in this work. To provide a sufficient data 

quality, furthermore only records that passed the following 

empirically found criterion, were analyzed for this study:  

1. A record had to have a minimum number of valid 

passes present (4 in this work).  

2. The validity of a pass was defined with min. amount 

of detected fixation points (3 in this work).  

3. Max. distance between top and bottom fixation points 

in a pass (4 deg. of the visual angle in this work).  

In Table 1, The participants proc. column presents the 

exact number of participants for each scenario that passed 

the above-mentioned criterion.  

3.4. Processing data 

3.4.1 Eye Movement Classification 

A velocity threshold algorithm (I-VT) with documented 

accuracy [28] was employed to classify individual data 

points with a velocity greater than 30°/sec for TRM and 

20°/sec for CEM-B as belonging to saccades, with all re-

maining points belonging to fixations. A micro-saccade 

filter re-classified saccades with an amplitude less than 0.5° 

for TAM and CEM-B as fixations, followed by a mi-

cro-fixation filter which re-classified fixations with a du-

ration less than 50ms for TRM and 100ms for CEM-B as 

noise. These thresholds provided the best biometric per-

formance for a particular model. 

Eye movement velocity at 1000 Hz sampling frequency 

was computed as suggested by Bahill et al.‟s [29] equation: 
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This equation to calculate saccade velocity was selected 

because it reduces the amount of noise in the obtained 

velocity profile when compared to the conventional 

two-point differentiation of the positional signal for the 

computation of velocity: 
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3.4.2 Biometric Data Comparison 

The biometric template construction phase included 

removing outliers from the distribution of the individual 

metrics to ensure meaningful statistical analysis. Outliers 

were defined as values exceeding 3 standard deviations 

from the mean. Average performance values for each met-

ric are reported in the next section. 

To be able to compare the biometric templates created by 

the TRM and CEM-B methods, it is important to employ 

statistical methods that allow comparing the distribution of 

values. Out of various methods we have investigated, the 

Two-Sample Kolmogorov-Smirnov (KS) Test performed 

the best for the TRM and the CEM-B both. For brevity only 

results from the KS are given. 

Two-Sample Kolmogorov-Smirnov (KS) Test 

The two-sample Kolmogorov-Smirnov test [30] tests the 

null-hypothesis that samples of two distributions are drawn 

from the same original distribution. The calculated p-value 

can be used as a continuous measure of the difference to get 

the numeric representation of how two distributed metric 

patterns are distinguished from each other. 

3.4.3 Biometric Data Fusion 

Eye movement recordings were analyzed as a set of 

partitions that were derived by splitting the original set of 

recorded data by subject into the training and the testing 

sets according to a uniformly random distribution with a 

ratio of 1:1, such that no subject had recordings in both the 

training and testing sets. The term „training‟ is employed 

only in the relation to applied fusion algorithms to form 

coefficients and other necessary components of fusion 

process. The training/testing process was performed 100 

times with subjects assigned to partitions randomly. Ex-

perimental results reported here are averages obtained by 

running such protocol. 

Among different methods investigated in this work, we 

employed a fusion algorithm based on the Weighed Mean 

of Rank-1 Identification Rates (IR) [31] of each metric as 

an algorithm that provides the best balance of biometric 

accuracy vs. computation time; therefore, this method was 

employed for both TRM and CEM-B models. 

IR Rank 1-based Weighted Mean fusion algorithm 

This algorithm consists of the following stages: 
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1. Obtaining similarity matrices for each of the metrics; 

2. Normalization of those matrices by MaxMin method; 

3. Obtaining Rank-1 IR for each of the metrics; 

4. Normalization of all Rank 1 IRs on a an interval [a, 1] 

with an equation: 

 

     
       (  )

   (  )    (  )
 (   )         (3)   

 

where a is a shift of the minimum value to avoid zeros. 

Zeros in IR values cause zeros in weights, which cause the 

information loss. Obviously, a=1 will cause a marginal 

case where all weights are equal. In the present work we 

used a=0.25, which was empirically found as the best 

tradeoff between the variability of weights and the preven-

tion of the information losses. 

5. Calculating weights for each metric by the following 

equation to provide a total sum of weights equal to 1: 

 

   
   

∑    
 
   

                          (4) 

3.5. Results 

3.5.1 Same Day test 

To improve performance of the TRM method by re-

moving redundant and low-performance metrics, two ap-

proaches – one based on the statistics and the other based 

on the performance – were applied to reduce the number of 

considered metrics. 

The statistical approach was based on the multiple linear 

regression analysis. Biometric templates were analyzed 

metric by metric, except the fused score. First, the means 

were calculated for each metric within each record, so for N 

records and M metrics the M×N table was formed. Each of 

the M columns represented a variable. Values within each 

variable that exceeded 3 standard deviations from the var-

iable mean were recognized as outliers, and L rows that had 

at least one outlier were discarded from further analysis, 

leaving M×(N−L) table. A multiple linear regression 

analysis was performed for each variable, calculating R
2
 

values for all given variables (dependent) related to the set 

of remaining variables (independent). 

The variables removal process started with the whole set. 

The metric with the highest R
2
 was removed from the 

subset. The process of removal continued until the infor-

mation fusion of the remaining metrics increased the re-

sulting EER instead of decreasing it.  

The performance-based approach considered the metrics 

remaining from the filtering performed by the statistical 

approach. In case of a performance-based approach, each 

metric with the worst EER was removed and the EER that 

resulted from the fusion of the remaining metrics was 

evaluated. If the resulting EER was reduced the metric was 

removed. The process of metric removal continued until the 

minimum possible EER was achieved. 

After statistical and performance-based filtering a final 

subset of the TRM metrics included the following 16, with 

the numbers in the brackets representing the average EER 

for this metric using the KS-test for the template matching 

(distribution comparison): 

 

M1. Hop Horizontal Amplitude (30.3%); 

M2. Hop Vertical Amplitude (34.5%); 

M4. Hop Duration (22.9%); 

M5. Hop Mean Horizontal Velocity (24.3%); 

M8. Hop Peak Horizontal Velocity (19.8%); 

M9. Hop Peak Vertical Velocity (23.9%); 

M13. Ratio of Pass Amplitude to Length of Text Line 

(40.0%); 

M14. Ratio of Pass Total Length to Length of Text Line 

(39.5%); 

M18. First Fixation Horizontal Offset for Line of Text 

(35.3%); 

M22 First Word Fixation Duration (26.3%); 

M24. Return Saccade Mean Horizontal Velocity (30.2%); 

M25. Return Saccade Mean Vertical Velocity (40.4%); 

M26. Return Saccade Mean Vectorial Velocity (28.4%); 

M27. Return Saccade Peak Horizontal Velocity (22.2%); 

M28. Return Saccade Peak Vertical Velocity (43.3%); 

M30. Return Saccade Duration (28.6%); 

Fused EER (IR Rank 1-based Weighted Mean): 10.2% 

 

  The performance of this subset can be compared with 

the CEM-B model that does not process the eye movements 

based on the text‟s structure. As it was mentioned earlier, 

the comparison of metric distributions was done by the 

KS-test. 

 

M1. Fixation start time (41.5%); 

M2. Fixation duration (21.7%); 

M3. Fixation horizontal centroid coordinates (35.1%); 

M4. Fixation vertical centroid coordinates (38.3%); 

M5. Saccade start time (42.7%); 

M6. Saccade duration (16.9%); 

M7. Saccade horizontal amplitude (23.8%); 

M8. Saccade vertical amplitude (26.8%); 

M9. Saccade horizontal mean velocity (17.1%); 

M10. Saccade vertical mean velocity (25.6%); 

M11. Saccade horizontal peak velocity (18.9%); 

M12. Saccade vertical peak velocity (22.7%); 

Fused EER (IR Rank 1-based Weighted Mean): 8.1% 
  

3.5.2 Template-aging test 

Table 1 presents the Template Aging results for the TRM 

and CEM-B models. To assess the difference in EER deg-

radation for the TRM and CEM-B models by switching 

from Same Day to Template Aging tests, each Same Day 

value was subtracted from each Template Aging value. 

Each pair of values from different tests produced a new 
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value, 4×2=8 values total per model. Both 8-number sets 

were normally distributed, and the Shapiro-Wilks normal-

ity test results were not statistically significant. A one-way 

ANOVA showed the significant difference between the 

EER of these two models F(1,14) = 11.249, p < 0.05. 

To build a smooth Receiver Operator Characteristics 

(ROC) curve presented in Figure 2, parametric binormal 

regression was used [32]. 

Table 1. Results of Same Day and Template Aging tests for 

TRM and CEM-B 

4. Discussion 

Both the TRM and the CEM-B have similar metrics re-

lated to fixation duration and saccade velocities (M1-M9, 

M14-M22 of TRM, all metrics of CEM-B). Among the 

considered metrics, those that represent saccade character-

istics yield the highest individual biometric accuracy than 

the metrics related to the fixational characteristics. Major 

difference between the TRM and CEM-B is that TRM 

contains also new metrics related to reading of a text 

(M13-M18). It also includes a new information fusion 

method based on the Weighed Mean of Rank-1 Identifica-

tion Rates that can be also employed by other biometric 

model, e.g. the CEM-B as it was showed in the present 

work. In addition, the TRM analyses filtered each record of 

eye movements for the reading task only, omitting any eye 

movements that did not correspond to the text structure. 

The removal of the additional eye movement information 

might be the reason why the TRM yields lower accuracy in 

the Same Day scenario. However, in the Template Aging 

scenario where time-related changes of eye movement 

characteristics might be present, a structured approach such 

as the TRM yields better accuracy.  

Analysis of the ROC curves provides additional infor-

mation. The TRM allows getting a better trade-off for the 

higher TPR with a low FAR for the Same Day scenario 

whereas CEM-B is just slightly better from this prospective 

in the Template Aging scenario. This is an additional evi-

dence that the TRM has a good potential for further re-

search.  
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6. Conclusion and future work 

This paper presented an eye movement-driven biometric 

technique that is text-based in an effort to provide a 

framework that would be more robust to the template aging 

effects. The technique uses text structure to process and 

align the recorded eye movements to extract their eye 

movement characteristics that are directly relevant to the 

task of reading a text. Although the proposed technique did 

not outperform an existing eye movement-driven biometric 

method, in the Same Day recording scenario, it outper-

formed the unstructured method in a scenario where the 

passage of time might change characteristics of the cap-

tured eye movements, i.e., the Template Aging scenario. 

Thus, the proposed method might be more practical in 

real-life use, where the time interval between the enroll-

ment and the subsequent uses of a biometrics system might 

be large. 

Our future work will concentrate on the incorporation of 

the additional metrics into the Text Reading Model in-

cluding performance characteristics related to the para-

foveal-on-foveal effect [33], assessment properties of 

working memory, linguistic models, mindless reading [34] 

and mind wandering [35]. Other stimulus-structure meth-

ods would be investigated as well to determine their ad-

vantages.  

 
TRM CEM-B 

 

Rec. 
EER 

M 

EER 

SD 

EER 

M 

EER 

SD 

Particip- 

ants proc. 

Same Day test 

S1-S2 11.3 1.7 8.9 1.6 82 

S3-S4 9.1 1.9 7.3 1.5 91 

Mean 10.2 1.8 8.1 1.5   

Template Aging test 

S1-S3 20.0 2.7 19.7 2.7 86 

S1-S4 18.8 2.3 19.0 2.4 87 

S2-S3 21.9 2.6 22.8 2.9 85 

S2-S4 18.8 2.8 21.9 2.9 89 

Mean 19.9 2.6 20.8 2.7   
Figure 2. Joint Receiver Operator Characteristic 
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