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Abstract—This paper investigates liveness detection techniques 
in the area of eye movement biometrics. We investigate a specific 
scenario, in which an impostor constructs an artificial replica of 
the human eye. Two attack scenarios are considered: 1) the im-
postor does not have access to the biometric templates represent-
ing authentic users, and instead utilizes average anatomical val-
ues from the relevant literature; 2) the impostor gains access to 
the complete biometric database, and is able to employ exact 
anatomical values for each individual. In the current work, 
liveness detection is performed at the feature- and match score-
levels for several existing forms of eye movement biometric, 
based on different aspects of the human visual system. The ability 
of each technique to differentiate between live and artificial re-
cordings is measured by its corresponding false spoof acceptance 
rate (FSAR), false live rejection rate (FLRR), and classification 
rate (CR). The results suggest that eye movement biometrics are 
highly resistant to circumvention by artificial recordings when 
liveness detection is performed at the feature-level. Unfortunate-
ly, not all techniques provide feature vectors that are suitable for 
liveness detection at the feature-level. At the match score-level, 
the accuracy of liveness detection depends highly on the bio-
metric techniques employed. 

Index Terms—Biometrics, liveness detection, spoofs, attack 
vectors, eye movements, pattern analysis, security and protection. 

I. INTRODUCTION 
IVENESS DETECTION is an important problem in the 
biometric domain, due to the fact that it is relatively sim-

ple to create convincing replicas of many existing biometrics. 
For example, commercial iris identification systems can be 
spoofed by high-resolution images of the eye printed on paper, 
with a hole to present the intruder’s pupil, bypassing liveness 
detection mechanisms [1, 2]. There are further examples of 
fingerprint scanners being spoofed by common household 
items like gelatin [3], and face detection systems spoofed by 
printed images of the face [4-6]. 
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While liveness detection has been researched extensively in 
a number of fields, there is almost no research on the topic of 
liveness detection as it relates to the field of eye movement 
biometrics. The idea of liveness detection via eye movements 
is appealing because eye movements can be captured in tan-
dem with iris information using a single image sensor [7]. In 
fact, the hardware in many existing iris recognition devices is 
capable of supporting modern video-oculography techniques 
to produce an eye movement signal. This provides an oppor-
tunity to increase the accuracy [8] and counterfeit-resistance 
of existing iris recognition devices. 

A. Related Work in Liveness Detection 
In the field of iris recognition, several liveness detection 

methods have been proposed and evaluated, involving: fre-
quency spectrum analysis of the iris image; analysis of light 
reflected from the spherical corneal surface (front wall of the 
eye); detection of corneal moistness; pupil dilation; and the 
quality-related features of the captured image [9-13]. 

In the field of fingerprint recognition, Coli and colleagues 
provide a survey of existing liveness detection techniques and 
their performance [14]. Shuckers et al. achieved 90-100% cor-
rect classification rate using the statistics of ridges and mois-
ture to measure the liveness of fingerprints [15, 16]. Ghiani et 
al. applied liveness detection by local binary patterns, pores, 
power spectrum analysis, wavelet energy signatures, valleys 
wavelets, and curvelets to achieve equal error rates of 7-13% 
[17]. Recent competitions indicate that fingerprint-based bio-
metrics are still susceptible to spoofing [18]. 

In the field of face recognition, liveness detection methods 
can be roughly categorized as analysis of motion, texture, and 
detection of life signs. Competition results of various algo-
rithms in this area indicate a high accuracy of detection for 2D 
spoofing attacks [19], particularly in regard to the PRINT-
ATTACK dataset [4]. 

B. Related Work in Eye Movement Biometrics 
In the current work, we explore the liveness detection prop-

erties of four existing eye movement biometric techniques, 
based on various aspects of the human visual system. These 
techniques include: oculomotor plant characteristics (OPC), 
complex oculomotor behavior (COB), complex eye movement 
patterns (CEM-P), and complex eye movement behavior 
(CEM-B) biometrics. 

In 2011, Holland and Komogortsev [20] described complex 
eye movement pattern (CEM-P) biometrics. CEM-P compares 
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average and aggregate measures of the eye movement scan-
path with a distance function to estimate the similarity of two 
recordings. Biometric features include: fixation count, average 
fixation duration, average saccadic amplitude, average sac-
cadic velocity, average saccadic peak velocity, velocity wave-
form indicator (Q), scanpath length, scanpath area, regions of 
interest, inflection count, amplitude-duration coefficient, and 
main sequence coefficient. 

In 2012, Komogortsev et al. [21] described oculomotor 
plant characteristic (OPC) biometrics. OPC utilizes mathemat-
ical models of the oculomotor plant to estimate the non-visible 
anatomical properties of the eye from the measurable proper-
ties of eye movements. Feature vectors are compared between 
recordings using the Hotelling’s T-square test to obtain a 
measure of similarity. Biometric features vary according to the 
parameters of the oculomotor plant model employed. 

In 2013, Holland and Komogortsev [22] described complex 
eye movement behavior (CEM-B) biometrics. CEM-B com-
pares the distribution of basic eye movement features 
throughout a recording using statistical techniques, such as the 
Kolmogorov-Smirnov test, to obtain a measure of similarity 
between recordings. Biometric features include: fixation start 
time, fixation duration, fixation centroid, saccade start time, 
saccade duration, saccadic amplitude, saccadic velocity, and 
saccadic peak velocity. 

In 2013, Komogortsev and Holland [23] described complex 
oculomotor behavior (COB) biometrics. COB examines the 
relative amount of corrective eye movements that occur in 
response to artifacts or otherwise aberrant behavior of the hu-
man visual system. Feature vectors are compared with a dis-
tance function to obtain a measure of similarity between re-
cordings. Biometric features include: uncorrected, corrected, 
and multi-corrected saccadic dysmetria, express saccades, 
dynamic saccades, and compound saccades. 

C. Motivation & Hypothesis 
The foundation for eye movement biometrics was formed in 

1971, when Noton and Stark [24] found that the eye move-
ments exhibited by a subject during the initial viewing of a 
pattern were repeated in 65% of subsequent viewings. The 
potential biometric applications of eye movements were large-
ly ignored, however, until 2004, when Kasprowski and Ober 
[25] applied voice recognition techniques to the eye move-
ment signal. Over the past decade, the field of eye movement 
biometrics has expanded at a rapid pace, but there are still 
many aspects that lack definition. 

The potential liveness detection properties of human eye 
movements have yet to be investigated by rigorous experimen-
tation. This paper builds on our previous research [26] on the 
liveness detection properties of eye movement biometrics to 
include: 1) additional models of the oculomotor plant; 2) an 
extended database of 173 living and artificial recordings; 3) 
recordings conducted on equipment with properties resem-
bling those of commercial iris recognition devices; 4) new 
statistical methods that allow for more accurate liveness detec-
tion; and 5) additional forms of eye movement biometric. 

II. BIOMETRIC ATTACK VECTOR 
The potential attack vectors for eye movement biometrics 

are limited, and may consist of physical or graphical represen-
tations. For a physical representation, the impostor must con-
struct a robotic and anatomically convincing model of the hu-
man eye, and for a graphical representation, the impostor may 
utilize a graphics-generated model of the human eye presented 
on a display medium, such as a phone. Assuming that both 
representations of an artificial eye can be calibrated1 by the 
eye tracking system, and bypass existing liveness detection 
techniques based on image analysis, the aim of our algorithms 
is to identify these impostor recordings based on features of 
the eye movement signal, including its variability. 

Mathematical modeling of the oculomotor plant simulates 
both representations, utilizing several models of varying com-
plexity to represent different classes of artificial eye that an 
impostor could employ. As a result, the presented baselines 
are not contaminated by the inherent noise associated with eye 
tracking equipment; however, the artificial eye movement 
signal is generated in such a way as to contain typical abnor-
malities and artifacts that occur naturally within the human 
visual system. 

A. Human Visual System 
The human visual system is composed, primarily, of two 

major components: the oculomotor plant and the brainstem 
control. The oculomotor plant encompasses the eye globe, six 
extraocular muscles, and a variety of surrounding tissues, lig-
aments, and fluids. The brainstem control is responsible for 
the generation and transmission of a neuronal control signal, 
sent to each of the extraocular muscles to produce the many 
and varied types of human eye movement [27]. 

For our purposes, two basic types of eye movement are of 
particular importance, due to the ease with which they can be 
evoked and replicated in humans via pre-programmed stimuli; 
these are: fixations and saccades. “Fixations occur when the 
eye globe is held in a relatively stable position, such that the 
fovea remains centered on an object of interest, providing 
heightened visual acuity; saccades occur when the eye globe 
rotates quickly between points of fixation, with very little vis-
ual acuity maintained during rotation.” [28] 

In addition to these basic eye movements, the human visual 
system exhibits a number of corrective eye movements that 
occur naturally due to saccadic dysmetria or otherwise aber-
rant behavior [23, 27]. These corrective behaviors often follow 
an off-target saccade with one or more small-amplitude sac-
cades in the direction of the target. 

It is assumed that an artificial eye would be capable of ex-
hibiting basic eye movements, such as fixations and saccades, 
interspersed with corrective eye movements at natural fre-
quencies and amplitudes found in the human visual system. 

 
1 Calibration is the process of detecting the position of the pupil and corne-

al reflection for a selected number of points, presented on the screen in known 
locations, in order to accurately interpolate the coordinates of future gaze 
locations. 
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B. Oculomotor Plant Mechanical Models 
Mathematical models of varying complexity can represent 

the mechanical functions of the oculomotor plant to simulate 
the dynamics of human eye movement; that is, in addition to 
the eye movement signal, the employed models simulate the 
physical muscle mechanics involved in the generation of eye 
movements. By optimizing the parameters of a given model to 
the recordings of a specific individual, it is possible to gener-
ate artificial recordings using the model. These false record-
ings are used as the biometric attack vector in the context of 
eye movement biometrics. Three distinct models were utilized 
in the current work, as follows: 

• Model I is Westheimer’s second-order model [29]. This 
model represents the eye globe and corresponding visco-
elasticity by single linear elements for inertia, friction, 
and stiffness. 

• Model II is Robinson’s fourth-order model [30]. This 
model uses a more realistic neuronal control signal, in the 
pulse-step form. 

• Model III is Komogortsev and Khan’s fourth-order mod-
el [31, 32]. This model extends Bahill’s model [33], rep-
resenting each extraocular muscle and their internal forces 
individually, with a separate pulse-step neuronal control 
signal provided to each muscle. 

To obtain the model parameters of a given individual, the 
raw positional signal of an eye movement recording is classi-
fied into fixations and saccades. Each recorded saccade is 
matched by a simulated saccade, generated via an oculomotor 
plant mathematical model (OPMM), with the goal of minimiz-
ing the absolute error between the measured and simulated 
saccade trajectories. Then, each saccade in a given recording 
generates a unique set of model parameters, also known as 
oculomotor plant characteristics (OPC). 

C. Spoofing Strategies 
There are two degrees of attack that an impostor could po-

tentially employ when generating an artificial eye movement 
recording. The naïve approach assumes that the impostor does 
not have access to the biometric database, while the sophisti-
cated approach assumes that the impostor has gained access to 
one or more OPC vectors from the database. 

• Approach A is the naïve approach, and assumes that the 
impostor does not have access to the biometric database, 
and instead generates artificial eye movements using 
measured or derived OPC values reported in the relevant 
research literature. Two artificial recordings are generated 
for each stimulus, and tested against the entire biometric 
database. 

• Approach B is the sophisticated approach, and assumes 
that the impostor has gained full access to the biometric 
database, and is able to generate artificial eye movements 
specific to an individual using the previously extracted 
OPC values now stored in the database. An artificial re-
cording is generated for each live recording, and tested 
against the entire biometric database. 

In the current work, we apply Approach A to Models I, II, 
and III, and we apply Approach B only to Model III, as this 
is the only model that can support individualized replication. 
Individualization of Models I and II lead to eye movement 
trajectories that are very different from normal, and can there-
fore be easily rejected due to their abnormalities. This means 
that two spoof recordings were generated with each model for 
Approach A, and an equal number of artificial recordings to 
live recordings for Approach B. 

III. METHODOLOGY 
Eye movement recordings were collected from two disjoint 

subject pools on high- and low-resolution eye tracking sys-
tems. The high-resolution eye tracking system resembles the 
state-of-the-art in current eye tracking technology, while the 
low-resolution eye tracking system applies video-oculography 
techniques and resembles hardware found in current iris 
recognition devices. The collected eye movement datasets are 
available as part of the EMDB database [34, 35]. 

A. Participants 
High-resolution recordings [35] were conducted on a sub-

ject pool of 32 participants (26 male, 6 female), with ages 
ranging from 18 – 40, average age 23 (SD = 5.4). 29 of the 
subjects performed 4 recordings each, and 3 of the subjects 
performed 2 recordings each, generating a total of 122 unique 
eye movement recordings. 

Low-resolution recordings [34] were conducted on a subject 
pool of 173 participants (117 male, 56 female), with ages 
ranging from 18 – 49, average age 23 (SD = 5.3). 170 of the 
subjects performed 2 recordings each, and 3 of the subjects 
performed 1 recording each, generating a total of 343 unique 
eye movement recordings. Note, the last 6 participants, each 
of which performed 2 recordings, were excluded from the so-
phisticated spoofing approach due to scheduling difficulties. 

B. Apparatus & Software 
High-resolution recordings were taken with a desktop 

mounted EyeLink 1000 commercial eye tracking system [36], 
with a sampling rate of 1000 Hz, vendor-reported spatial accu-
racy of 0.5°, average calibration accuracy of 0.7° (SD = 0.5°), 
and average data validity of 95% (SD = 5%). Stimuli were 
presented on a flat screen monitor positioned at a distance of 
685 mm from each subject, with dimensions of 640×400 mm, 
and screen resolution of 2560×1600 pixels. 

Low-resolution recordings were taken with the PlayStation 
Eye Camera [37], using a modified version of the open-source 
ITU Gaze Tracker software [7], with a sampling rate of 75 Hz 
and average calibration accuracy of 1.1° (SD = 0.8°). Average 
data validity is the percentage of gaze points reported by the 
eye tracking system that contained valid eye movement data, 
and is unreportable in this instance as it was not possible to 
detect when the eye tracker began tracking an area of the im-
age other than the subject pupil. Stimuli were presented on a 
flat screen monitor positioned at a distance of 540 mm from 
each subject, with dimensions of 375×302 mm, and screen 
resolution of 1280×1024 pixels. 
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In both cases, the pupil was illuminated by infrared LED to 
improve eye tracking accuracy, and a chin rest was employed 
to improve stability. Stimulus presentation was consistent 
across both devices, with only minor changes required to ac-
commodate varied screen dimensions. Algorithms and data 
analysis were implemented and conducted in MATLAB. 

C. Procedure 
For each recording session, eye movements were evoked 

using a horizontal saccade stimulus, in which a small white 
dot jumps back and forth across a plain black background, 
eliciting a fixed-amplitude saccade with each jump. The dis-
tance between jumps was set to correspond to 30° of the visual 
angle, due in part to screen constraints, complications separat-
ing low-amplitude saccades (less than 1°), and variation in the 
dynamics of high-amplitude saccades (greater than 50°). Sub-
jects were instructed to follow the white dot with their eyes, 
with 100 horizontal saccades elicited per session. 

After the data collection process, OPC values were extract-
ed from each live recording. According to the methods de-
scribed in Section II, artificial recordings were generated for 
three oculomotor plant models and two spoofing strategies. 
The live and artificial recordings were then combined into a 
single dataset for each eye tracking systems, and liveness de-
tection was conducted at the feature- and match score-level. 
For comparison, liveness detection was also conducted using 
the techniques proposed by Komogortsev and Karpov in 2013. 

Previous techniques developed by Komogortsev and Kar-
pov perform principal component analysis on biometric fea-
ture vectors to obtain the eigenvector, and compare the maxi-
mum eigenvalue against a fixed threshold to determine the 
liveness of a given recording [26]. In the original paper, 
liveness thresholds ranged from 1000 to 6000 in increments of 
100. On a sample of 122 recordings from 32 subjects, this 
technique was able to achieve a maximum classification rate 
of 93% and a minimum equal error rate of 5% in previous 
studies using 10-fold cross validation. 

Feature-level liveness detection utilized a regression SVM 
[38] with RBF kernel (gamma = 1) and leave-one-out cross-
validation for the selection of training and testing sets. Bio-
metric feature vectors were calculated for each recording ses-
sion, and each feature vector was labeled as live or spoof. Fea-
ture vectors were classified, one at a time, after training the 
SVM on all other recordings (exclusively). An ideal threshold 
was then selected to maximize classification rate. For both the 
OPC and CEM-B techniques, which utilize multi-dimensional 
feature vectors, the eigenvector obtained by principal compo-
nent analysis was passed to the SVM. 

Score-level liveness detection applied biometric matching 
techniques across all recordings, and utilized leave-one-out 
cross-validation for the selection of training and testing sets. 
Biometric matching was conducted according to the standards 
suggested by each technique, with match score-level infor-
mation fusion applied by a regression SVM [38] with RBF 
kernel (gamma = 1); however, instead of labeling and match-
ing according to the identity of the subject, each recording was 
labeled and matched as either a live or spoof recording. In the 

case of the OPC technique, the Cramér-von Mises variant of 
feature comparison was used to generate match scores for in-
dividual features preceding information fusion. For each re-
cording, biometric match scores were generated against all 
other recordings in the database, after training the biometric 
algorithms on all other recordings (exclusively). An ideal 
threshold was then selected to minimize classification error. 

Leave-one-out cross-validation performed a number of rep-
etitions, n, equal to the total number of recordings in a given 
dataset. For Approach A, there were 2 spoof recordings for 
each model, with 122 high-resolution recordings (n = 122 + 2 
= 124) and 343 low-resolution recordings (n = 343 + 2 = 124). 
For Approach B, there was 1 spoof recording for each live 
recording, with 122 high-resolution recordings (n = 122 + 122 
= 244) and 343 low-resolution recordings, less 24 recordings 
that could not be replicated by the mathematical model (n = 
343 + 343 – 24 = 662). Due to the exponential growth in time 
and space complexity under score-level liveness detection, it 
was necessary to reduce the size of the SVM training set of the 
low-resolution recordings for spoofing technique III-B. For 
each iteration of cross-validation, exactly ¼ of the available 
subject pool was selected for the training set. This lead to the 
same number of total comparisons, but in each case the train-
ing set for the SVM was reduced from 438,244 match scores 
to 27,390 match scores, making computation tractable. 

In relation to both feature- and score-level liveness detec-
tion we are primarily concerned with three metrics: false spoof 
acceptance rate (FSAR), false live rejection rate (FLRR), and 
classification rate (CR) [26]. In both cases, the OPC technique 
was omitted from the low-resolution recordings, due to the 
fact that it would take prohibitively long to re-extract bio-
metric templates from the spoof recordings. 

FSAR =
Misclassified  Spoof  Recordings

Total  Spoof  Recordings
 (1) 

FLRR =
Misclassified  Live  Recordings

Total  Live  Recordings
 (2) 

CR =
Correctly  Classified  Recordings

Total  Recordings
 (3) 

EER = (FSAR = FLRR) (4) 

False spoof acceptance rate (FSAR), shown in Equation 1, 
is the ratio of misclassified spoof recordings to the total num-
ber of spoof recordings. False live rejection rate (FLRR), 
shown in Equation 2, is the ratio of misclassified live record-
ings to the total number of live recordings. Classification rate 
(CR), shown in Equation 3, is the ratio of correctly classified 
recordings to the total number of recordings (either live or 
spoof). The equal error rate (EER), shown in Equation 4, is the 
rate at which false spoof acceptance rate and false live rejec-
tion rate are equal, and does not necessarily correspond to the 
threshold at which the classification rate is maximized. 
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IV. RESULTS 
Results are labeled according to the oculomotor plant model 

and spoofing strategies employed. For example, “III-B” indi-
cates that the results pertain to Model III and Approach B. An 
overview of the accuracy of previous liveness detection tech-
niques [26] is provided in Table I. An overview of feature-
level liveness detection accuracy is provided in Table II. An 
overview of match score-level liveness detection is provided 
in Table III. The following section provides further explana-
tion and analysis of the obtained results. 

V. DISCUSSION 
The results presented in the current paper represent a major 

improvement on our previous research [26] in the area of 
liveness detection. Where, in the previous paper, the best per-
forming attempt at liveness detection achieved only a 5% 
equal error rate [26], using the naïve approach and the sim-
plest model on a high-resolution eye tracking system, the 
techniques presented in this paper have shown that liveness 
detection at the feature-level is capable of achieving 0% equal 
error rate (see Table II) even when the impostor has gained 
access to the biometric database and employs complex models 
of the human visual system.  

A. Comparison to Previous Techniques 
Where our previous research [26] examined only the 

liveness detection properties of the OPC biometric, using 
broad thresholds and random splitting, the current paper has 
applied those techniques to several additional forms of eye 
movement biometric, using fine-grained threshold selection 
and leave-one-out cross validation. While this has shown that 
our previous techniques are capable of achieving higher accu-
racy than indicated by previous studies, utilizing the maximum 
eigenvalue ignores much meaningful information, and in some 
cases is clearly the wrong approach, leading to equal error 
rates which exceed 50% (see Table I).  

In comparison, the techniques presented in this paper are 
more accurate at both the feature- and match score-levels. For 
example, utilizing the full eigenvector for classification by 
support vector machine leads to near-perfect accuracy in the 
OPC and CEM-B biometrics (see Table II). Further, previous 
techniques fail to achieve acceptable accuracy on all but the 
simplest models, and have a tendency toward high false spoof 
acceptance rate (see Table I). 

B. Liveness Detection 
There are obvious and immediate differences between the 

accuracy of liveness detection at the feature- and match score- 
levels. While liveness detection at the feature-level achieves 
almost perfect accuracy under all tested conditions (see Table 
II), match score-level detection does substantially worse (see 
Table III). This may be due to any of several factors.  

It is possible that the differences in accuracy may be due to 
overfitting at the feature-level, resulting from an overall 
smaller knowledge base. That is, at the feature-level there are 
(N-1) training vectors for the SVM at each iteration, whereas 

there are (N-1)2 training vectors at the match score-level, 
where N is the total number of live and spoof recordings in the 
dataset. This could indicate that match score-level detection 
rates are a more accurate representation of the liveness detec-
tion capabilities of eye movement biometrics; however, the 
only way to confirm this would be to apply feature-level de-
tection to a much larger subject pool.  

More likely, however, is the fact that information is simply 
lost when the biometric feature vectors are converted into a 
relevant match score. Essentially, by combining groups of 
biometric feature vectors into a single value, noise is added to 
the system. This makes it more difficult for the system to dif-
ferentiate between recordings. For example, at the feature-
level, there is no crossover in the information provided by live 
recordings and spoof recordings, but match scores may con-
tain information from both. 

C. Biometric Attack Vectors 
When examining the spoofing strategies employed, there is 

obviously very little difference at the feature-level. With the 
exception of spoofing strategy III-B on the low-resolution 
recordings, feature-level liveness detection was able to accu-
rately distinguish between live and spoof recordings (see Ta-
ble II). For this reason, it is necessary to examine classifica-
tion accuracy at the match score-level to identify differences 
in spoofing models and approaches.  

High-Resolution Recordings (HR) 
Biometric Spoof FSAR FLRR CR EER 

OPC 

I-A 100% 1% 98% 4% 
II-A 100% 1% 98% 18% 
III-A 100% 1% 96% 80% 
III-B 29% 32% 70% 31% 

COB 

I-A 0% 0% 100% 0% 
II-A 0% 0% 100% 0% 
III-A 0% 1% 99% 1% 
III-B 2% 1% 99% 2% 

CEM-P 

I-A 100% 1% 98% 2% 
II-A 100% 1% 98% 11% 
III-A 100% 1% 96% 51% 
III-B 2% 61% 69% 51% 

CEM-B 

I-A 0% 0% 100% 0% 
II-A 0% 0% 100% 0% 
III-A 100% 1% 96% 50% 
III-B 14% 66% 61% 46% 
Low-Resolution Recordings (LR) 

Biometric Spoof FSAR FLRR CR EER 

COB 

I-A 100% 0% 99% 97% 
II-A 100% 0% 99% 97% 
III-A 100% 0% 99% 97% 
III-B 2% 26% 86% 21% 

CEM-P 

I-A 100% 0% 99% 13% 
II-A 100% 0% 99% 26% 
III-A 100% 0% 99% 29% 
III-B 1% 30% 84% 29% 

CEM-B 

I-A 0% 0% 100% 0% 
II-A 0% 0% 100% 0% 
III-A 100% 0% 99% 57% 
III-B 0% 1% 99% 1% 

Table I. Liveness detection accuracy of previous techniques. 
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At the match score-level, there is an obvious tendency for 
the naïve spoof approach (A) to result in a relatively high per-
centage of false spoof acceptance, where the sophisticated 
spoof approach (B) results in a relatively high percentage of 
false live rejection (see Table III), at the optimal classification 
rate. Under the naïve approach, this occurs because there are a 
substantially smaller number of spoof recordings than live 
recordings, which leads to a strategy that maximizes classifi-
cation rate by minimizing the live rejection rate. As such, this 
can be seen as an artifact of the methodology, not necessarily 
the techniques. The classification rates obtained under the 
sophisticated approach, in which the number of live and spoof 
samples are equal, more accurately resemble real-world usage. 
Overall, however, equal error rate is a better indicator of accu-
racy than classification rate, because it is not affected by the 
relative amount of live and spoof samples.  

There is a further tendency for detection accuracy to de-
crease linearly with model complexity (see Tables I, II, and 
III). This is notable in the false spoof acceptance rates and 
equal error rates of the naïve approach. Westheimer’s second-
order model, having the least complexity (and thereby the 
least realistic signal), produced the most easily distinguished 
spoof recordings, whereas Komogortsev and Khan’s fourth-
order model, with its representation of individual muscle 
properties, performed more successful attacks at the match 
score-level than any other oculomotor plant model. 

D. Eye Movement Biometrics 
There were several notable differences in the liveness detec-

tion properties of the considered biometric techniques. Of the 
considered biometrics, the CEM-P technique was overall the 
most accurate in distinguishing live recordings from spoof 
recordings. While COB and OPC provided similar accuracy at 
the feature-level, CEM-P outperformed both at the match 
score-level. Despite the fact that CEM-B performed relatively 
well at the match score-level, with similar accuracy to the 
CEM-P technique, the inability to perform liveness detection 
at the feature-level is seen as a major shortcoming. 

The computational overhead associated with the OPC tech-
nique makes it unsuitable for real-time liveness detection, and 
intractable for experimentation on large datasets. At the same 
time, however, this can be seen as an advantage to the liveness 
detection properties of eye movements in general. It is only 
possible to generate artificial eye movements by modeling the 
human visual system, whether at the software level or even 
with a hardware counterpart. Existing models of the oculomo-
tor plant fail to represent the human visual system with perfect 
accuracy, and tradeoffs must be made. Further, the time re-
quirements of even these computationally efficient linear 
models make it infeasible for a potential impostor to generate 
more than a few targeted artificial recordings in a realistic 
timeframe with modern technology. 

E. Eye Tracking System 
With few exceptions, the decreased spatial accuracy and 

sampling rate of the low-resolution recordings reduced the 
overall accuracy of liveness detection. This, in itself, is not 

surprising; however, some interesting connections can still be 
made. Under the naïve spoofing approach, in which the impos-
tor does not have access to the biometric database, feature-
level liveness detection maintained perfect accuracy on the 
low-resolution system, and low equal error rates even at the 
match-score level. 

There is, however, a dramatic reduction in accuracy on the 
low-resolution system when coupled with the sophisticated 
spoofing approach. When we consider that the low-resolution 
recordings, taken at 75 Hz, contain less than 1/13th of the in-
formation present in the high-resolution recordings, taken at 
1000 Hz, it is perhaps surprising that the differences in detec-
tion accuracy are not more drastic. 

In some instances, we even notice that detection accuracy 
increases on the low-resolution system (see Table III), particu-
larly with regard to spoofing strategy III-A. In this case, it may 
be that the artificial recordings failed to accurately reflect the 
inherent noise and lower accuracy of the low-resolution sys-
tem. This suggests that, even if an oculomotor plant model 
were to achieve perfect reproduction of human eye move-
ments, software-level attacks must also account for the inher-
ent properties of the capture device as well. While this would 
not be the case for functional physical replicas, the construc-
tion of such a replica poses its own difficulties. 

High-Resolution Recordings (HR) 
Biometric Spoof FSAR FLRR CR EER 

OPC 

I-A 0% 0% 100% 0% 
II-A 0% 0% 100% 0% 
III-A 0% 0% 100% 0% 
III-B 0% 0% 100% 0% 

COB 

I-A 0% 0% 100% 0% 
II-A 0% 0% 100% 0% 
III-A 0% 0% 100% 0% 
III-B 0% 0% 100% 0% 

CEM-P 

I-A 0% 0% 100% 0% 
II-A 0% 0% 100% 0% 
III-A 0% 0% 100% 0% 
III-B 0% 0% 100% 0% 

CEM-B 

I-A 0% 0% 100% 0% 
II-A 0% 0% 100% 0% 
III-A 0% 0% 100% 0% 
III-B 2% 0% 99% 2% 
Low-Resolution Recordings (LR) 

Biometric Spoof FSAR FLRR CR EER 

COB 

I-A 0% 0% 100% 0% 
II-A 0% 0% 100% 0% 
III-A 0% 0% 100% 0% 
III-B 13% 0% 94% 13% 

CEM-P 

I-A 0% 0% 100% 0% 
II-A 0% 0% 100% 0% 
III-A 0% 0% 100% 0% 
III-B 40% 0% 80% 40% 

CEM-B 

I-A 0% 2% 98% 2% 
II-A 0% 2% 98% 2% 
III-A 0% 2% 98% 2% 
III-B 35% 3% 81% 35% 

Table II. Feature-level liveness detection accuracy. 
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F. Vulnerability Analysis 
While we have demonstrated that it is possible to identify 

spoof eye movement recordings with high accuracy, it is still 
necessary to demonstrate that spoofed recordings present a 
viable threat to eye movement biometrics, in order to justify 
the need for liveness detection techniques. Attack vectors are 
typically targeted at biometric verification systems in an at-
tempt to gain access to the resources of a specific individual. 
For this reason, we are primarily interested in the rate at which 
spoof recordings are accepted as genuine users in a verifica-
tion scenario.  

To this end, biometric error rates were calculated on the 
high- and low-resolution data sets using the standard biometric 
techniques for OPC [21], COB [23], CEM-P [20], and CEM-B 
[22] biometrics, as described in the relevant references, with-
out the introduction of spoof recordings. For the OPC tech-
nique, information fusion was performed using the Hotelling’s 
T-square test; for the COB technique, information fusion was 
performed using likelihood ratio; for the CEM-P technique, 
information fusion was performed using linear combination; 
and for the CEM-B technique, information fusion was per-
formed using a 50-tree random forest. 

This was done to identify the acceptance threshold at which 
false acceptance rate (the rate at which impostor match scores 
exceed the acceptance threshold) and false rejection rate (the 
rate at which genuine match scores fall below the threshold) 
are equal. Equal error rates and acceptance thresholds were 
averaged over 20 random partitions, in which half of all sub-
jects were used for training and half were used for testing, 
without subject overlap. It should be noted that equal error rate 
used in this context is different than the equal error rate used 
elsewhere in this paper, as this term is used in relation to bio-
metric accuracy rather than liveness detection accuracy. 

Spoof recordings were then introduced to identify the false 
spoof acceptance rate at the equal error rate of the biometric 
system. Biometric match scores were generated for compari-
sons for each spoof recording to every live recording. Match 
scores were averaged over 20 random partitions, and the aver-
age match scores for spoof recording to live recording com-
parisons were used to calculate the false spoof acceptance rate 
with and without feature-level liveness detection.  

The results of this experiment are provided in Table IV, in-
dicating the number of spoof attacks which generated a match 
score above the acceptance threshold, the number of spoof 
attacks which generated a match score below the acceptance 
threshold, and the false spoof acceptance rate for a given at-
tack vector against a given biometric technique. 

It is worth noting that, in several cases, false spoof ac-
ceptance rate increases with the addition of feature-level 
liveness detection. This is due to the overall lower number of 
spoof recordings which make it to the decision module. For 
example, if there are 2 spoof recordings and 1 is accepted as 
genuine, there is a false spoof acceptance rate of 50%, where-
as if there are 10 spoof recordings and 4 are accepted as genu-
ine, there is a false spoof acceptance rate of only 40%, despite 
the fact that 4 times as many spoofs were accepted. In most 
cases where false spoof acceptance rate increases, the number 

of spoof recordings with match scores above the acceptance 
threshold is actually reduced with the inclusion of feature-
level liveness detection, with one notable exception. 

With the use of feature-level liveness detection via CEM-B 
for low-resolution recordings, the number of III-B spoof re-
cordings with match scores above the acceptance threshold 
increases. Most likely this is due to the fact that biometric 
matching trains on a subset of the population. Without feature-
level liveness detection, there is a greater population of spoof 
recordings to train against, and thus the CEM-B algorithm is 
less likely to generate a high match-score for comparisons of 
spoof recordings to live recordings. When, presumably the 
weakest, spoof recordings are removed from the population by 
feature-level liveness detection, the remaining spoofs are more 
likely to generate a higher match score against live recordings. 

Despite a low spoof acceptance rate, even for targeted at-
tacks, the need for explicit liveness detection techniques is 
apparent. While human eye movements expose a number of 
properties that allow for a high degree of counterfeit-
resistance, they are not inherently immune to attacks. The re-
search presented in this paper provides a starting point for 
reducing the potential attack surface. 

High-Resolution Recordings (HR) 
Biometric Spoof FSAR FLRR CR EER 

OPC 

I-A 57% 1% 98% 10% 
II-A 74% 0% 97% 24% 
III-A 68% 1% 97% 16% 
III-B 9% 57% 79% 26% 

COB 

I-A 68% 0% 97% 22% 
II-A 69% 0% 98% 23% 
III-A 100% 0% 97% 24% 
III-B 6% 34% 87% 17% 

CEM-P 

I-A 1% 0% 100% 0% 
II-A 3% 0% 100% 1% 
III-A 100% 0% 97% 19% 
III-B 8% 26% 88% 14% 

CEM-B 

I-A 1% 0% 100% 0% 
II-A 1% 0% 100% 0% 
III-A 100% 0% 97% 18% 
III-B 4% 35% 88% 16% 
Low-Resolution Recordings (LR) 

Biometric Spoof FSAR FLRR CR EER 

COB 

I-A 96% 0% 99% 28% 
II-A 100% 0% 99% 29% 
III-A 93% 0% 99% 18% 
III-B 2% 8% 96% 5% 

CEM-P 

I-A 3% 0% 100% 1% 
II-A 11% 0% 100% 2% 
III-A 37% 0% 99% 3% 
III-B 2% 3% 98% 2% 

CEM-B 

I-A 60% 0% 99% 2% 
II-A 99% 0% 99% 4% 
III-A 100% 0% 99% 5% 
III-B 1% 6% 98% 3% 

Table III. Match score-level liveness detection accuracy. 
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G. Further Analysis 
Many existing iris recognition devices are not designed for 

video capture, and often have hardware limitations that cap the 
effective sampling rate between 15 Hz and 30 Hz. To examine 
liveness detection accuracy under these conditions, recordings 
from both the high- and low-resolution eye tracking systems 
were downsampled to a sampling rate of 15 Hz by removing 
data points at uniform intervals to lower the average time be-
tween points.  

Again, the OPC technique was omitted from both feature- 
and match score-level detection at 15 Hz due to time con-
straints, and the CEM-B technique was inapplicable to feature-
level detection. Further, the CEM-B technique failed to extract 
features once downsampling to 15 Hz was applied (that is, an 
error occurred in the algorithm itself, unrelated to classifica-
tion rate). This leaves analysis open to only the CEM-P and 
COB techniques. 

At the feature-level, the CEM-P technique maintained the 
same accuracy achieved at 1000 Hz, while the COB technique 
showed only minor reduction in accuracy (1-3% equal error 

rate) in all but one case (in which equal error rate increased to 
46% with strategy II-A). At the match-score level, the COB 
technique showed major accuracy loss across all strategies, 
approaching near random detection rates. This is expected, as 
COB features become less pronounced at reduced sampling 
rates. On the other hand, CEM-P was more resistant to these 
effects, with equal error rates increased by 10-20% under 
spoof strategies I-A and II-A, while spoof strategy III-A actu-
ally showed equal error rates reduced by 2-18% in all cases. 

To examine the validity of the downsampling technique, the 
high-resolution recordings taken with the EyeLink 1000 were 
downsampled to 75 Hz, and liveness detection was compared 
to the accuracy achieved by the low-resolution PlayStation 
Eye recordings taken at a native 75 Hz. There was a general 
tendency for the downsampled high-resolution recordings to 
outperform the equivalent low-resolution recordings by 1-5% 
equal error rate. The relatively minor difference suggests that 
they may be accounted for by the reduced spatial accuracy of 
the PlayStation Eye camera (1.1° calibration accuracy vs. 0.7° 
calibration accuracy) or the differences in subject pool. 

High-Resolution Recordings (HR) 

Biometric Spoof EER 
Without Liveness Detection Feature-Level Detection 

Above 
Threshold 

Below 
Threshold FSAR Above 

Threshold 
Below 

Threshold FSAR 

OPC 

I-A 

18% 

8 236 3% 0 0 0% 
II-A 0 244 0% 0 0 0% 
III-A 8 236 3% 0 0 0% 
III-B 208 14676 1% 0 0 0% 

COB 

I-A 

30% 

22 222 9% 0 0 0% 
II-A 18 226 7% 0 0 0% 
III-A 21 223 9% 0 0 0% 
III-B 1207 13677 8% 0 0 0% 

CEM-P 

I-A 

38% 

45 199 18% 0 0 0% 
II-A 0 244 0% 0 0 0% 
III-A 57 187 23% 0 0 0% 
III-B 1930 12954 13% 0 0 0% 

CEM-B 

I-A 

23% 

5 239 2% 0 0 0% 
II-A 8 236 3% 0 0 0% 
III-A 5 239 2% 0 0 0% 
III-B 104 14780 1% 8 237 3% 

Low-Resolution Recordings (LR) 

Biometric Spoof EER 
Without Liveness Detection Feature-Level Detection 

Above 
Threshold 

Below 
Threshold FSAR Above 

Threshold 
Below 

Threshold FSAR 

COB 

I-A 

41% 

26 660 4% 0 0 0% 
II-A 18 668 3% 0 0 0% 
III-A 29 657 4% 0 0 0% 
III-B 1467 112066 1% 1201 12536 9% 

CEM-P 

I-A 

38% 

7 679 1% 0 0 0% 
II-A 0 686 0% 0 0 0% 
III-A 42 644 6% 0 0 0% 
III-B 5500 108033 5% 238 445 35% 

CEM-B 

I-A 

31% 

38 648 6% 0 0 0% 
II-A 24 662 4% 0 0 0% 
III-A 41 645 6% 0 0 0% 
III-B 103 113430 0% 3044 42370 7% 

Table IV. Biometric vulnerability with and without liveness detection. 
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H. Limitations & Future Research 
There are several notable limitations of the current work 

that must be addressed in future research. First, in the current 
work we have employed only linear models of the oculomotor 
plant due to computational constraints and the size of the 
available datasets; however, the human visual system exhibits 
a number of non-linear properties [39] that can only be ap-
proximated by linear models. To the best of our knowledge, 
there are no existing models of the oculomotor plant that 
achieve a perfect representation of the human visual system, 
but there do exist non-linear models capable of more accurate 
representation [40]. As technology advances, these models 
may become more viable as potential attack vectors, and fur-
ther testing will be necessary to identify what threat, if any, 
they might pose. 

As well, our classification threshold was selected empirical-
ly to maximize classification rate, in order to demonstrate the 
potential liveness detection properties of eye movement bio-
metrics. In real-world usage, the classification threshold would 
be selected on a subset of available data, and would likely be 
far from ideal. As such, there is still much work to be done in 
this area, identifying accuracy and usage conditions in real-
world scenarios. Further, a comparison of biometric authenti-
cation accuracy with and without attack vectors would be use-
ful in quantifying the inherent spoofability of eye movement 
biometrics, before the application of anti-spoofing methods; 
however, such a comparison is beyond the scope of the current 
paper, and will likely be a topic of future research. 

Another limitation of the current work is the purely soft-
ware-based treatment of biometric attack vectors. Perhaps 
fortunately, the engineering required to produce a viable phys-
ical replica of the oculomotor plant (particularly, such a repli-
ca that could physically simulate multiple models of the hu-
man eye without loss of accuracy) made its employment in the 
current study infeasible. At some point in the future it will be 
necessary to revisit the possibility of the physical attack. 

Finally, the relatively sparse treatment of the OPC biometric 
technique due to the time requirements of extracting biometric 
templates is seen as a disadvantage of the current study. It 
remains to be seen whether the OPC technique performs ade-
quately for liveness detection at low sampling rates. This is an 
area of active research. 

VI. CONCLUSION 
This paper has investigated liveness detection techniques in 

the area of eye movement biometrics. We have investigated a 
specific scenario, in which an impostor constructs an artificial 
replica of the human eye. Two attack scenarios were consid-
ered, in which the imposter does and does not have direct ac-
cess to the biometric database. 

Liveness detection was performed at the feature- and match 
score-levels for several existing eye movement biometric 
techniques. The results suggest that eye movement biometrics 
are highly resistant to circumvention by artificial recordings 
when liveness detection is performed at the feature-level. At 
the match score-level, the accuracy of liveness detection de-

pends highly on the biometric techniques employed. 
These tests were repeated on high- and low-resolution re-

cording devices, and while obvious degradation occurred at 
the match score-level, feature-level liveness detection 
achieved near perfect accuracy even at very low sampling 
rates. This suggests that eye movement biometrics could be 
employed on existing iris recognition devices to improve 
liveness detection capabilities. 
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