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Abstract—This paper presents an objective evaluation of the 
effects of environmental factors, such as stimulus presentation 
and eye tracking specifications, on the biometric accuracy of 
oculomotor plant characteristic (OPC) biometrics. The study 
examines the largest known dataset for eye movement biometrics, 
with eye movements recorded from 323 subjects over multiple 
sessions. Six spatial precision tiers (0.01°, 0.11°, 0.21°, 0.31°, 
0.41°, 0.51°), six temporal resolution tiers (1000 Hz, 500 Hz, 250 
Hz, 120 Hz, 75 Hz, 30 Hz), and three stimulus types (horizontal, 
random, textual) are evaluated to identify acceptable conditions 
under which to collect eye movement data. The results suggest 
the use of eye tracking equipment providing at least 0.01° spatial 
precision and 30 Hz sampling rate for biometric purposes, and 
the use of a horizontal pattern stimulus when using the two-
dimensional oculomotor plant model developed by Komogortsev 
et al. [1]. 

Index Terms—Biometrics, eye movements, mathematical 
modeling, pattern analysis, security and protection. 

I. INTRODUCTION 
HE HUMAN FACE is one of the most distinctive features 
with which we assign and recognize identity in our daily 

lives, and its overall structure is largely dependent on the 
physical structure of the human visual system. Facial 
geometry was first proposed as a biometric trait in the 1960s 
[2], but did not begin to gain traction with the biometric 
community until the 1990s [3]. Early research in this area was 
highly susceptible to aging effects [4, 5] and environmental 
factors [6], such as angle and lighting; however, recent 
developments have made significant progress in eliminating 
these issues [7]. 

Today, there are many techniques for performing facial 
recognition, which may be broadly described by two 
categories: those that compare geometric features of the face, 
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and those that compare statistical features of the image [8]. 
Techniques in the former category, such as elastic bunch 
graph matching [9], typically model salient features of the 
face, such as the nose, mouth, and eyes; while techniques in 
the latter category, such as tensor factorization [7], apply 
mathematical transformations and analysis to the individual 
pixels of the facial image. 

Fingerprints are often regarded as the gold standard of 
biometric accuracy [8], with open dataset competitions 
showing equal error rates approaching 2% under the effects of 
skin distortion and rotation [10]; however, fingerprint 
biometrics suffer from two major drawbacks. First, and most 
notably, fingerprints are easy to forge; and while fingerprints 
provide substantial resistance to zero-effort attacks, it takes 
minimal effort to defeat such a system [11]. Second, 
fingerprint biometrics are intrusive; that is, in order for 
biometric features to be collected, an individual must 
physically interact with the biometric sensor. 

Speculation about the identifying characteristics of iris 
patterns can be traced as far back as the late 1800s [12], but 
was largely ignored in a biometric context until the 1980s, 
when a patent [13] stifled innovation for nearly a decade. The 
study of iris pattern biometrics picked up quickly however 
[14], and was achieving authentication accuracies that rival 
fingerprints [10] by the early 2000s [15]. Unfortunately, like 
fingerprints, iris pattern biometrics are easily fooled by 
minimal-effort attacks [16]. 

Much of the current work in this area is based on the 
principles of Daugman’s research [17], in which the iris 
pattern is projected onto a Gabor wavelet, and compared with 
a test for statistical independence. Often it is necessary to 
correct for orientation and occlusions, but even still these 
techniques are highly efficient, with computation times 
measurable in milliseconds on modern hardware [18]. 

Over the past decade, study of the human visual system has 
shown that eye movements may be utilized to uniquely 
identify individuals in a biometric context [19, 20]. Consisting 
of both physical and neurological components [21], and due to 
the minute scale, the accurate replication of eye movements 
outside of a living subject is practically infeasible, providing 
inherent levels of counterfeit-resistance and liveness detection 
that many traditional biometrics cannot [22]. 

Further, eye movements may be captured and processed in 
real-time using an unmodified camera [23] through the use of 
modern video-oculography techniques. Not only does this 
make the collection of eye movement data inexpensive and 
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efficient, but the ability to capture iris patterns and eye 
movements with a single sensor allows for easy integration 
into multi-model biometric systems. 

Biometrics traits may be distinguished by their invariance 
and persistence. The invariance of eye movements was 
established in early experiments by Noton and Stark [25], in 
which it was identified that the eye movements produced by a 
subject during the initial viewing of a pattern were repeated 
during 65% of subsequent viewings. The persistence of eye 
movements has been established in many short-term studies, 
described in Section I.B; however, as a relatively recent 
addition to the biometric field, with initial investigations 
beginning in 2004, there are currently no longitudinal studies 
that establish the long-term persistence of eye movements. 

A. Human Visual System 
The human visual system is composed of the oculomotor 

plant, shown in Figure 1, and brainstem control, shown in 
Figure 2. The oculomotor plant [21] describes the major 
physical components of the human visual system, including 
the eye globe, six extraocular muscles, surrounding tissues, 
ligaments, tendon-like components, and viscous fluids; and the 
brainstem control [24] describes the major neurological 
components of the human visual system, including sub-
regions of the thalamus, superior colliculus, and posterior 
parietal cortex.  

The brainstem control generates a neural signal to each of 
the extraocular muscles that corresponds to the type, direction, 
and magnitude of eye movement, and the oculomotor plant 
responds, enacting the mechanical functions that produce the 
movement. In concert, these systems produce six basic types 
of eye movement [21], including: fixation, saccade, smooth 
pursuit, vestibulo-ocular reflex, optokinetic reflex, and 
vergence/version. 

Fixation occurs when the eye is held in a relatively stable 
position to provide visual acuity on a fixed object; saccades 
occur when the eye rotates rapidly between points of fixation, 
with little visual acuity maintained during rotation; smooth 
pursuit occurs when the eye rotates slowly, maintaining 
fixation on a slowly moving object; optokinetic reflex refers to 
the sequence of smooth pursuits and saccades which occur 
when the eye attempts to maintain fixation on a rapidly 
moving object; vestibulo-ocular reflex refers to the corrective 
eye movements that occur to maintain fixation on a stationary 
object during head movement; and vergence/version refers to 

the corrective eye movements that occur to maintain fixation 
on an object whose distance changes. These may be further 
divided into a number of sub-types, such as micro-fixations 
and express saccades [21]. 

B. Previous Research 
The foundations of eye movement biometrics stem from 

early research in scanpath theory, where the term scanpath 
refers to the spatial path formed by an ordered sequence of 
fixations and saccades. In 1971, Noton and Stark [25] found 
that the scanpath formed by a subject during the initial 
viewing of a pattern was repeated in 65% of subsequent 
viewings. Further, it has been found by various sources that 
the scanpath produced for a given stimulus pattern tends to 
vary from person to person [25-27]. These inherent properties 
of scanpath—subconscious reproduction, variation by subject, 
and variation by stimulus—provide a basis for the use of eye 
movements as a behavioral biometric. 

In 2004, Kasprowski and Ober [20] were the first to 
examine the use of eye movements in a biometric context. 
Utilizing voice recognition techniques, the first 15 cepstral 
coefficients were extracted from the positional eye movement 
signal, with information fusion by Bayes classifiers, C4.5 
decision trees, polynomial SVMs, and KNN (k = 3 and k = 7). 
With a subject pool of 9 participants, the described techniques 
achieved an average 1% false acceptance rate and 23% false 
rejection rate. 

In 2005, Bednarik et al. [28] examined a set of pupil-related 
features, including: pupil diameter, distance between corneal 
reflections, gaze velocity, and change in pupil diameter over 
time, using Fourier transfer and PCA to reduce the continuous 
signal to a feature vector, with information fusion by weighted 
sum. With a subject pool of 12 participants, the described 
techniques achieved a 92% rank-1 identification rate using 
leave-one-out cross-validation. 

In 2006, Silver and Biggs [29] examined a range of high-
level eye movement features, including: coordinates and 
duration of the 8 longest fixations, fixation count, average 
fixation duration, average saccade velocity, average saccade 
duration, and average vertical position, using KNN as a 
distance function with information fusion by a probabilistic 
neural network. With a subject pool of 21 participants, the 
described techniques achieved an average 66% true positive 
rate and 98% true negative rate. 

Figure 1. The oculomotor plant. Figure 2. The brainstem control. 
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In 2011, Holland and Komogortsev [30] examined a set of 
high-level average and aggregate eye movement features 
(CEM-P), including: fixation count, average fixation duration, 
average saccade amplitude, average saccade velocity, average 
saccade peak velocity, velocity waveform indicator, scanpath 
length, scanpath area, regions of interest, inflection count, 
amplitude-duration coefficient, and main sequence coefficient, 
using a Gaussian distance function, with information fusion by 
weighted mean. With a subject pool of 32 participants, the 
described techniques achieved a 22% equal error rate. 

In 2012, Komogortsev et al. [31] examined the use of 
mathematical models of the oculomotor plant to extract the 
physical properties of the human visual system from the 
observable properties of eye movements (OPC). Biometric 
features included a number of anatomical parameters, with 
information fusion by Hotelling’s T2 test. With a subject pool 
of 59 participants, the described techniques achieved a 19% 
minimum half-total error rate. 

In 2013, Komogortsev and Holland [32] examined a set of 
high-level features related to corrective eye movements 
(COB), including: multiple types of saccadic dysmetria and 
express saccades, with information fusion by likelihood ratio, 
linear SVM, and random forest. With a subject pool of 32 
participants, the described techniques achieved 25% equal 
error rate and 47% rank-1 identification rate. 

Most recently, Holland and Komogortsev [19] examined a 
set of low-level features based on the distribution of basic eye 
movements throughout a recording (CEM-B). Distributions of 
fixations and saccades were compared using the two-sample 
Cramér von-Mises test, with information fusion by 50-tree 
random forest. With a subject pool of 32 participants, the 
described techniques achieved 17% equal error rate and 83% 
rank-1 identification rate. 

C. Motivation & Hypothesis 
Eye movements present a novel and unique solution to the 

challenges faced by modern biometrics. Consisting of both 
physical and neurological components, and due to the minute 
scale, the accurate replication of eye movements outside of a 
living subject is practically infeasible (if not impossible), 
providing an inherent level of liveness detection and 
counterfeit-resistance. Further, recent advances in video-
oculography allow for the efficient capture of eye movements 
from even low-quality image sensors, reducing the cost of 
entry and enabling integration with many existing iris, 
periocular, and facial recognition systems. 

In this paper, we hypothesize that environmental factors, 
such as stimulus and eye tracking specification may affect the 
biometric accuracy of oculomotor plant characteristics (OPC), 
and that the effects of these environmental factors may differ 
from existing studies of alternative eye movement biometrics, 
such as CEM-P [30] and CEM-B [19]. The current paper 
expands greatly on our previous research by: examining a 
substantially larger pool of 323 subjects and exploring the 
effects of spatial precision, sampling rate, and stimulus 
presentation on oculomotor plant characteristics (OPC). 

II. OCULOMOTOR PLANT CHARACTERISTICS 
The biometric techniques investigated in this paper are 

based on the oculomotor plant characteristic (OPC) techniques 
originally proposed by Komogortsev et al. [31]. An 
oculomotor plant model describes the physical structure of the 
human visual system as a series of equations. Muscle 
parameters, referred to as oculomotor plant characteristics 
(OPC), are estimated from the eye movement recording to 
produce a model that accurately represents the eye movements 
of a given individual. The estimated OPC values provide a 
biometric template that can be used for authentication. 

A. Oculomotor Plant Model 
There are a variety of models that have been proposed to 

simulate the mechanics of the human visual system [33], 
typically representing the oculomotor plant as a linear one-
dimensional model or a non-linear three-dimensional model. 
Despite decades of research, as far back as the 1970s [34], 
there does not yet exist a perfect mathematical representation 
of the human visual system, due largely to the complexity of 
the neurological components involved. For our purposes, an 
oculomotor plant model was selected to allow accurate 
reproduction of two-dimensional human eye movements 
within certain limitations, while accounting for expected 
anatomical properties of the human visual system. 

The current work focuses on a two-dimensional linear 
homeomorphic model of the oculomotor plant, developed by 
Komogortsev et al. [1] as an extension of Bahill’s one-
dimensional model [35]. The considered model sacrifices 
some accuracy for computational tractability, while still 
accounting for major anatomical components. Further, the 
model is particularly suited for parallel computation, as the 
horizontal and vertical components of eye movement can be 
modeled separately. 

B. Oculomotor Plant Characteristics 
We refer to the parameters of the oculomotor plant model as 

oculomotor plant characteristics (OPC), which describe the 
physical and neurological properties of the human visual 
system. The considered model, derived and explained in [1, 
36] has 18 parameters for each direction of movement (in this 
case, horizontal and vertical): 

1. Series Elasticity (AG) [KAG_SE = 2.5 g/°] 
2. Series Elasticity (ANT) [KANT_SE = 2.5 g/°] 
3. Length-Tension Relationship (AG) [KAG_LT = 1.2 g/°] 
4. Length-Tension Relationship (ANT) [KANT_LT = 1.2 g/°] 
5. Force-Velocity Relationship (AG) [BAG = 0.046 g×s/°] 
6. Force-Velocity Relationship (ANT) [BANT = 0.022 g×s/°] 
7. Passive Viscosity [BP = 0.06 g×s/°] 
8. Tension Slope (AG) [NAG_C = 0.8 g] 
9. Tension Slope (ANT) [NANT_C = 0.5 g] 

10. Inertial Mass [J = 0.000043 g×s2/°] 
11. Activation Time (AG) [τAG_AC = 11.7] 
12. Activation Time (ANT) [τANT_AC = 2.4] 
13. Deactivation Time (AG) [τAG_DE = 2.0] 
14. Deactivation Time (ANT) [τANT_DE = 1.9] 
15. Tension Intercept [NFIX_C = 14.0 g] 
16. Neural Pulse (AG) [NAG_SAC = 55 g] 
17. Neural Pulse (ANT) [NANT_SAC = 0.5 g] 
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18. Neural Pulse Width [PW = 6 ms] 

The terms AG and ANT refer to agonist and antagonist 
muscles respectively, where the agonist muscle contracts to 
rotate the eye globe and the antagonist muscle expands to 
resist the pull of the agonist, with bracketed terms indicating 
default parameter values. Values in square brackets represent 
default model parameters used in the OPC biometric template 
computation procedure discussed later. 

Series elasticity describes the resistive properties of the 
extraocular muscles, associated with tendons. The length-
tension relationship describes the relationship between the 
length of the muscle and the force it is capable of exerting. 
The force-velocity relationship describes the relationship 
between the velocity of muscle contraction and the force it is 
capable of exerting. The tension slope and tension intercept 
describe the reaction of the muscle to innervation and ensure 
equilibrium during fixation, respectively. As well, the inertial 
mass of the eye globe and passive viscosity of the surrounding 
tissue must be accounted for.  

The considered model employs a pulse-step representation 
of the neuronal control signal, in which the pulse represents 
the magnitude of the firing rate of neurons during saccade and 
the step represents the magnitude during fixation. The pulse 
width indicates the duration of the neural pulse, which cannot 
exceed the duration of the saccade, and requires at least 3 ms 
for activation/deactivation at the beginning and end of a 
saccade. Activation and deactivation time describe the time 
required for changes in the neuronal control signal to 
propagate through the extraocular muscles. 

C. Estimation of Oculomotor Plant Characteristics 
The most time-consuming part of OPC-based authentication 

is the estimation of oculomotor plant characteristics from 
recorded saccade trajectories, shown in Figure 3. Parameter 
estimation seeks to identify the OPC parameters that minimize 
the difference between the recorded saccade trajectory and the 
simulated trajectory produced by the model. 

The estimation routine utilizes the Nelder-Mead simplex 
search algorithm for multi-dimensional unconstrained non-
linear minimization [37]. A vector of OPC parameters is 
initialized with realistic default values based on the relevant 
literature [35, 38, 39]. An error function invokes the 
oculomotor plant model to simulate a saccadic trajectory for a 
given set of OPC parameters, and returns the absolute 
difference between the measured and simulated trajectories. 
The Nelder-Mead simplex algorithm adjusts the vector of 
OPC parameters, shrinking or expanding the search region for 
each parameter, in an attempt to minimize the result of the 
error function, until some exit criteria is satisfied. 

Constraints are imposed on the OPC vector to reduce the 
search space and prevent unrealistic parameter values. OPC 
parameter values are not allowed to vary by more than an 
order of magnitude above or below the default value, and the 
stability of the model is taken into account when accepting an 
optimized OPC parameter vector. 

D. Software Performance 
The OPC estimation software was originally implemented 

in MATLAB, utilizing the features of the Parallel Computing 
Toolbox to off-load computation to a parallel compute cluster. 

In this way, a control program handles communication with 
MATLAB workers in the compute cluster, and each worker 
runs the OPC estimation routine on its subset of trajectories. 

While this software scales almost linearly with the number 
of parallel workers, the cost of additional cluster nodes and 
MATLAB licenses makes this solution less than desirable. As 
an alternative, the OPC estimation routine was re-written with 
NVIDIA’s CUDA technology to take advantage of the 
massively parallel computation capabilities of modern GPUs. 

In this way, the Nelder-Mead simplex algorithm executes 
on the CPU, while the oculomotor plant model simulates 
saccade trajectories on the GPU. Komogortsev et al. [36] two-
dimensional oculomotor plant model is particularly suited for 
this type of application, as it can be easily expressed as a set of 
matrix equations, taking advantage of the fact that many GPU 
devices have been optimized for matrix operations. 

Since sending and retrieving data from the GPU is more 
expensive than standard memory access, measured saccade 
trajectories are loaded into GPU memory once at the start of 
execution, reducing the overhead of potentially sending each 
saccade trajectory individually. The Nelder-Mead simplex 
algorithm is initialized on the CPU, and an initial set of OPC 
parameters is sent to the GPU. Model simulation and the error 
function are executed on the GPU, and the error is returned to 
the Nelder-Mead algorithm, which tests for exit criteria and 
provides a new set of OPC parameters to the GPU. 

The employed CUDA solution benchmarked on a single 
NVIDIA GeForce GTX 460, with 336 CUDA cores, is 
approximately 400% faster than the entire 64-node MATLAB 
cluster, with 2.53 GHz Intel Xeon E5540 processors. 
Considering there are now graphics cards with more than 5000 
cores (for example, the GeForce GTX TITAN Z) and faster 
clock rates, and that multiple graphics cards may be connected 
to work as a single unit, it is likely that in the future a CUDA 
solution will allow real-time OPC estimation for live OPC-
based biometric systems. Please note that detailed technical 
description of the CUDA solution is beyond the scope of this 
paper and will be discussed in a separate manuscript. 

III. METHODOLOGY 
Eye movement recordings employed in this paper were 

collected as part of an NSF CAREER grant study, and will be 
made available online for public use within the next year. A 
segment of the dataset is provided as a part of the BioEye 
2015 competition, available at: www.bioeye.info. 

A. Participants 
Eye movement data was collected for a total of 335 subjects 

(178 males, 157 females), ages 19 – 46 with an average age of 

Figure 3. OPC estimation procedure. 
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22 (SD = 4), with demographics summarized in Figure 4.   322 
of the subjects performed 2 recordings for each stimulus, 1 of 
the subjects performed 1 recording for each stimulus, and 12 
of the subjects were unable to produce usable recordings, for a 
total of 645 unique eye movement recordings per stimulus, 
with an inter-session interval between each type of stimulus of 
approximately 20 minutes. The inter-session interval was 
selected to reduce variability in recordings, and may not 
reflect real-world conditions. Texas State University’s 
institutional review board approved the study, and subjects 
provided informed consent.  

For the 12 subjects that failed to produce usable recordings, 
these subjects were unable to proceed through eye tracking 
calibration, and never progressed to the point of stimulus 
recording. This can occur for various reasons, including: 
excessive eye moisture, squinting, and shape or color of the 
eye. For more details on conditions that might lead to failed 
calibration, see [40]. 

B. Apparatus & Software 
Eye movements were recorded using an EyeLink 1000 eye 

tracking system [41], with a sampling rate of 1000 Hz, 
vendor-reported spatial precision of 0.01°, vendor-reported 
spatial accuracy of 0.5°, average calibration accuracy of 0.5° 
(SD = 0.2°), and average data validity of 97% (SD = 5%). 
Note, the EyeLink 1000 vendor refers to spatial precision as 
spatial resolution [42]; however, we have confirmed with the 
vendor that this is identical to the definition of spatial 
precision given in the current paper. Stimuli were presented on 
a flat screen monitor positioned at a distance of 550 
millimeters, with dimensions of 474×297 millimeters, and 
screen resolution of 1680×1050 pixels. A chin rest was 
employed to improve stability. All algorithms and analysis 
were implemented and performed in MATLAB, and executed 
using a 4.0 GHz quad-core CPU with 16 GB memory. 

C. Procedure 
Eye movement recordings were generated for three distinct 

stimulus patterns (horizontal, random, and textual) under 
closely controlled conditions, in an attempt to achieve the best 
possible baseline accuracy. This included restrictions to head 
mobility and inter-session intervals that may not accurately 
reflect real-world usage. While such restrictions limit the 
usability of such a system, there exist a wide range of eye 
tracking systems with differing levels of spatial precision, 

sampling rate, and available mobility. It is expected that the 
results presented in the current paper will aid future research 
in selecting appropriate systems. 

Eye movement recordings were parsed and processed to 
remove invalid data points. Recordings were stored in an eye 
movement database, with each record linked to the stimulus, 
subject, and session that generated the recording. Dithering 
and downsampling were applied (exclusively) to the eye 
movement recordings to artificially reduce spatial precision 
and sampling rate for the best performing stimulus. The 
recordings were then classified into fixations and saccades 
using an eye movement classification algorithm [43]. 

A velocity threshold algorithm (I-VT) with documented 
accuracy [44] was employed to classify individual data points 
with a velocity greater than 20°/sec as belonging to a saccade, 
with all remaining points belonging to fixations. A micro-
saccade filter re-classified saccades with amplitude less than 
0.5° as fixations, followed by a micro-fixation filter which re-
classified fixations with a duration less than 100 milliseconds 
as saccades. Saccades of less than 4° amplitude were rejected 
in order to omit micro-saccades and corrective saccades from 
analysis, as these saccadic sub-types exhibit different behavior 
than normal saccades. Saccades with duration less than 20 
milliseconds were rejected to omit potential artifacts caused 
by blinks and provide more uniform data quality. OPC 
parameters were estimated for the horizontal component of 
each remaining saccade, the vertical component was discarded 
to reduce computation time, according to the techniques 
described in Section II. 

Eye movement recordings were partitioned into training and 
testing sets, by subject, according to a uniformly random 
distribution; such that, all recordings from half of the subject 
pool of a given dataset appeared in the training set, with the 
other half of the subject pool in the testing set, and there was 
no subject overlap between training and testing sets. Error 
rates were calculated under biometric verification and 
identification scenarios for 20 random partitions of training 
and testing sets. Regression was performed on the error rates 
achieved across all partitions to generate receiver operating 
characteristics (false acceptance rate vs. true positive rate) and 
cumulative match characteristic (rank vs. identification rate) 
curves, with R2 > 0.95 in all cases. Equal error rate, rank-1 
identification rate, and area-under-curve were calculated from 
the regression. 

 
Figure 4. Demographic breakdown of participants by age, gender, ethnicity, and vision. 
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Biometric match scores were generated comparing OPC 
parameters between pairs of recordings. Each recording 
generated a set of 18-parameter OPC vectors for each saccade, 
these vectors were compared between recordings using 
Hotelling’s T2 test. Error rates were then calculated on the 
testing set for individual matches under biometric verification 
and identification scenarios. 

Biometric verification involves comparing each record in 
the testing set against every other record in the testing set 
exactly once [8]. False acceptance rate is defined as the rate at 
which imposter match scores exceed the acceptance threshold, 
false rejection rate is defined as the rate at which genuine 
match scores fall below the acceptance threshold, and true 
positive rate is defined as the rate at which genuine match 
scores exceed the acceptance threshold. The equal error rate is 
the rate at which false acceptance rate and false rejection rate 
are equal. The receiver operating characteristic (ROC) plots 
true positive rate against false acceptance rate, and the area-
under-curve of the ROC provides a metric by which to 
compare the accuracy achieved by ROC curves. 

Biometric identification involves comparing every record in 
the testing set against every other record in the testing set, 
with identification rates calculated from the largest match 
score(s) in each comparison set [8]. Identification rate is 
defined as the rate at which enrolled subjects are successfully 
identified as the correct individual, where rank-k identification 
rate is the rate at which the correct individual is found within 
the top k matches. Then, the rank-1 identification rate is the 
rate at which the correct individual has the highest match 
score. The cumulative match characteristic (CMC) plots 
identification rate by rank, for all ranks, and the area-under-
curve of the CMC provides a metric by which to compare the 
accuracy achieved by CMC curves. 

D. Stimulus Patterns 
The horizontal pattern stimulus (HOR) made use of a 

technique typically employed in eye movement research to 
evoke a fixed-amplitude horizontal saccade at regular intervals 
[21]. A small white circle sized 0.58° with a black dot in the 
center sized 0.3° to facilitate accurate fixation jumped back 
and forth across a plain black background, eliciting a saccade 
for each jump. The distance between jumps was set to 
correspond to 30° of the visual angle, due in part to screen 
constraints, complications separating low-amplitude saccades 
(less than 1°), and variation in the dynamics of high-amplitude 
saccades (greater than 50°). Subjects were instructed to follow 
the white circle with their eyes, with 100 horizontal saccades 
elicited per session, and 2 recording sessions per subject. 

The random pattern stimulus (RAN) was similar in 
presentation to the horizontal pattern stimulus. A small white 
circle with the same properties as the horizontal stimulus 
jumped across a plain black background in a uniformly 
distributed random pattern, eliciting a saccade for each jump. 
Subjects were instructed to follow the white dot with their 
eyes, with 100 randomly directed oblique saccades elicited per 
session, and 2 recording sessions per subject. The random 
pattern stimulus is an important use case for biometrics, as it is 
more resistant to relay spoof attacks; and, unlike the horizontal 
and textual stimuli, the random stimulus is largely immune to 

learning effects that may degrade the biometric sample over 
time. 

The textual pattern stimulus (TEX) made use of various 
excerpts from Lewis Carroll’s “The Hunting of the Snark.” 
The poem was chosen for its difficulty and nonsensical 
content, forcing readers to progress slowly and carefully 
through the text. Textual excerpts were selected to ensure that 
reading required approximately 1 minute, line lengths and the 
difficulty of material was consistent, and learning effects did 
not impact subsequent readings. Subjects were given different 
textual excerpts for each recording session, with 2 recording 
sessions per subject. 

It must be noted that the recordings for horizontal, random, 
and textual stimuli were part of a larger experiment in which 
subjects watched various types of stimulus. The total duration 
of all stimuli and periods of rest did not exceed one hour. 

IV. RESULTS 
For each experiment, records were partitioned into training 

and testing sets by subject, according to a uniformly random 
distribution. With half of the subject pool in the training set, 
and half of the subject pool in the testing set, without overlap. 
Algorithm parameters were selected on the training set and 
regression was performed on biometric error rates of the 
testing set over 20 random partitions. 

A. The Effects of Stimulus Type 
To examine the effects of stimulus on biometric accuracy, 

three different stimulus patterns (described in the previous 
section) were presented to each subject. Eye movements were 
recorded for the horizontal, random, and textual stimulus 
patterns, each of which exercises different aspects of the 
human visual system. In the case of the random stimulus, we 
have included results from the horizontal (H) and vertical (V) 
components of movement for comparison. As was noted 
previously, the remaining stimuli analyzed only the horizontal 
component of movement. For biometric verification, Figure 5 
provides equal error rates and area-under-curve for ROC 
curves. For biometric identification, Figure 6 provides rank-1 
identification rates and area-under-curve for CMC curves. 

The horizontal stimulus had a clear advantage in terms of 
biometric accuracy. The random stimulus exhibited the worst 
identification accuracy, whereas the textual stimulus exhibited 
the worst verification accuracy. In the case of the textual 
stimulus, this is likely due to the fact that eye movements 
during a reading task tend towards relatively low-amplitude 
saccades, which are known to have certain characteristics such 
as waveform which differ from large-amplitude saccades [21]. 

In the case of the random stimulus, which induces a large 
number of oblique saccades, we hypothesize that the lower 
biometric accuracy may be caused by a combination of 
component stretching and higher amplitude saccades. First, 
oblique saccades are affected by component stretching [45], 
the process by which the velocity of the lower-amplitude 
component of a two-dimensional saccade is reduced such that 
both components have a similar duration. Synchronization 
issues in the neuronal control signal of the horizontal and 
vertical components of movement during stretching can 
manifest in the complex shapes of oblique saccades [46], 
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which are difficult to model. Further, there are multiple 
theories on the specifics of how component stretching occurs 
in humans [47]. Without a clear consensus on the underlying 
mechanism for component stretching, the oculomotor plant 
model ignores the effects of component stretching during 
modeling and employs a simplified pulse-step neuronal 
control signal, which may lead to reduced biometric accuracy 
when modeling oblique saccades. 

Second, saccades of larger amplitudes cannot be modeled as 
accurately by the chosen oculomotor plant model due to 
simplifications made to increase computational tractability, 
specifically: 1) the model employs a linear representation of 
fundamentally non-linear anatomical components; and 2) 
three-dimensional rotational movements are modeled as two-
dimensional translations. Saccades of smaller amplitudes can 
be accurately modeled despite these assumptions, but error 
introduced by these simplifications compounds as the 
amplitude of the saccade increases. 

When considering the horizontal and vertical components of 
movement extracted from the random stimulus, it can be seen 
in Figure 5 that the horizontal component yields lower equal 
error rates and higher rank-1 identification rates than the 
vertical component. This may be explained by the fact that 
vertical eye movements are affected by four extraocular 
muscles (superior recti, inferior recti, superior oblique, and 
inferior oblique), while the oculomotor plant model only 
accounts for two (superior and inferior recti). In comparison, 
the horizontal component is only affected by two extraocular 
muscles (lateral and medial recti), and similarly represented by 
two muscles in the model. The simplified representation of the 
vertical component reduces the accuracy of the applied model 
and may be responsible for the overall reduction in biometric 
accuracy. 

It should be noted that information fusion of biometrics for 
both horizontal and vertical components can provide better 
performance than either; however, the investigation of this 
performance is beyond the scope of the current paper. 

B. The Effects of Spatial Precision 
Spatial precision represents variance in the positional 

accuracy of the recorded eye movement signal and is 
measured by equation (3) presented in [48]. Spatial precision 
is an important measure of eye tracking quality and is affected 
by multiple factors [48]. 

To examine the effects of spatial precision on biometric 
accuracy, dithering was applied to recordings for the textual 
stimulus prior to eye movement classification. Dithering 
reduced baseline precision by adding uniformly distributed 
error to the recorded eye movement position; considered 
spatial precision tiers from a hardware base of 0.01° include: 
0.01°, 0.11°, 0.21°, 0.31°, 0.41°, and 0.51°. In other words, a 
spatial precision of 0.11° implies 0.1° of random noise. For 
biometric verification, Figure 7 provides equal error rates and 
area-under-curve for ROC curves. For biometric 
identification, Figure 8 provides rank-1 identification rates and 
area-under-curve for CMC curves. 

In both verification and identification scenarios, there is an 
almost exponential loss of biometric accuracy as spatial 
precision is reduced. In fact, the relative 69% increase in equal 
error rate (from 14.5% to 24.5% EER) and the relative 333% 

reduction in rank-1 identification rate (from 24.7% to 7.4% 
IR) when spatial precision is reduced from the baseline 0.01° 
to 0.11° suggests that, in its current state, OPC-based 
biometrics are very sensitive to precision degradation and that 
precision should be maintained at a low level for OPC-based 
biometrics to achieve the best possible accuracy. 

C. The Effects of Sampling Rate 
To examine the effects of sampling rate on biometric 

accuracy, downsampling was applied to recordings for the 
textual stimulus prior to eye movement classification. 
Downsampling reduced the sampling rate by removing data 
points to lower the average time between points; considered 
sampling rate tiers from a hardware base of 1000 Hz include: 
1000 Hz, 500 Hz, 250 Hz, 120 Hz, 75 Hz, and 30 Hz. For 
biometric verification, Figure 9 provides equal error rates and 
area-under-curve for ROC curves. For biometric 
identification, Figure 10 provides rank-1 identification rates 
and area-under-curve for CMC curves. 

In both scenarios, sampling rate appears to have very little 
effect on biometric accuracy, with a slight linear trend as 
sampling rate is reduced. Biometric verification accuracy 
varies by roughly 2% equal error rate in terms of the absolute 
difference from sampling rates of 120 Hz to 1000 Hz, and 
biometric identification accuracy varies by roughly 3% 
identification rate in terms of the absolute difference from 
sampling rates of 75 Hz to 500 Hz, with a noticeable jump at 
1000 Hz. Based on these results, sampling rate should be 
considered secondary to spatial precision when selecting an 
eye tracking system for OPC-based biometrics. 

D. The Effects of Scaling 
To examine the impact of scaling on the estimation of 

biometric accuracy, error rates were calculated on subsets of 
the total subject pool for the textual stimulus. Subsets of the 
subject pool were selected randomly according to a uniform 
distribution, without regard for factors such as race, gender, or 
age; considered subject pools included: 50, 100, 150, 200, 
250, 300, and 335 subjects. For biometric verification, Figure 
11 provides equal error rates and area-under-curve for ROC 
curves. For biometric identification, Figure 12 provides rank-1 
identification rates and area-under-curve for CMC curves. 

In terms of verification accuracy, there was no discernable 
difference in equal error rates produced for a subject pool of 
50 or a subject pool of 323; this result is mirrored by the area-
under-curve. In the case of identification, there was a slight 
reduction in rank-1 identification rates as the subject pool 
increases. As the subject pool increases, the random chance 
probability of the correct subject having the highest match 
score is reduced. For example, with 2 subjects, the random 
chance that the correct subject has the highest match score is 
50%, and with 100 subjects, the random chance that the 
correct subject has the highest match score is 1%. With this in 
mind, the 36% rank-1 identification rate with 50 subjects is 
comparable to the 25% rank-1 identification rate with 323 
subjects. This is further supported by the fact that the area-
under-curve of the cumulative match characteristic depicted in 
Figures 11 and 12 was highly stable from 50 subjects to 323 
subjects, and in fact increased from 93% to 94% as the size of 
the subject pool increased. 
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Figure 5. The effects of stimulus type on the biometric accuracy of eye movements in a verification scenario. 

Error bars indicate 95% confidence interval for the regression of error rates. 
 

 

  
Figure 6. The effects of stimulus type on the biometric accuracy of eye movements in an identification scenario.  

Error bars indicate 95% confidence interval for the regression of error rates. 
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Figure 7. The effects of spatial precision on the biometric accuracy of eye movements in a verification scenario. 

Error bars indicate 95% confidence interval for the regression of error rates. 
 

 

  
Figure 8. The effects of spatial precision on the biometric accuracy of eye movements in an identification scenario.  

Error bars indicate 95% confidence interval for the regression of error rates. 
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Figure 9. The effects of sampling rate on the biometric accuracy of eye movements in a verification scenario. 

Error bars indicate 95% confidence interval for the regression of error rates. 
 

 
  

Figure 10. The effects of sampling rate on the biometric accuracy of eye movements in an identification scenario.  
Error bars indicate 95% confidence interval for the regression of error rates. 
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Figure 11. The effects of scaling on the biometric accuracy of eye movements in a verification scenario. 

Error bars indicate 95% confidence interval for the regression of error rates. 
 

 

  
Figure 12. The effects of scaling on the biometric accuracy of eye movements in an identification scenario.  

Error bars indicate 95% confidence interval for the regression of error rates. 
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V. CONCLUSION 
This paper has presented an objective evaluation of the 

effects of environmental factors, such as stimulus presentation 
and eye tracking specifications, on the biometric accuracy of 
oculomotor plant characteristic (OPC) biometrics. Six spatial 
precision tiers (0.01°, 0.11°, 0.21°, 0.31°, 0.41°, 0.51°), six 
temporal resolution tiers (1000 Hz, 500 Hz, 250 Hz, 120 Hz, 
75 Hz, 30 Hz), and three stimulus types (horizontal, random, 
textual) were evaluated to identify acceptable conditions under 
which to collect eye movement data. 

The results suggest the use of eye tracking equipment with 
high spatial precision (i.e. close to 0.01°) and a minimum 
sampling rate of 30 Hz, though 120 Hz sampling rate is 
recommended for best performance. Further, the horizontal 
pattern stimulus had a clear advantage, though this may be due 
to the oculomotor plant model that was employed. In addition, 
there was little difference in the biometric accuracy produced 
for a subject pool of 50 compared to a subject pool of 323. 
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