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Abstract 
 

A novel biometrics approach that performs 

authentication based on the anatomical characteristics of 

the oculomotor plant (comprising the eye globe, its muscles 

and the brain’s control signals) is presented. The 

extraction of the oculomotor plant characteristics (OPC) is 

achieved by analyzing the recorded eye movement 

trajectories via a 2D linear homeomorphic mathematical 

representation of the oculomotor plant. The derived OPC 

allow authentication via various statistical methods and 

information fusion techniques. Authentication based on 

OPC yielded Half Total Error Rate of 25% for a pool of 59 

recorded subjects, when the eye movement records were 

affected by the re-calibration biases of the eye tracking 

equipment. However, when the impact of re-calibration is 

removed the designed methods allow the achievement of an 

HTER close to 15% for the same pool of subjects. The OPC 

biometric authentication has high counterfeit resistance 

potential, because it includes both behavioral and 

physiological human attributes that are hard to reproduce. 

1. Introduction 

The methods of biometric identification have evolved 

throughout history from basic measurements of head 

dimensions [1] to more advanced techniques involving 

fingerprints [2], iris [3], and face recognition [4]. But the 

above-mentioned techniques are not completely 

fraud-proof since they are based on human body 

characteristics that can be replicated with modern 

technological advances [2-5].  As a result there is a 

significant need in biometrics research to identify methods 

that are highly counterfeit resistant. In this paper we present 

a method that has potential to be highly counterfeit resistant 

because it employs non-visible anatomical structures of the 

human eye. 

The human eye already provides a plethora of 

information useful for biometrics. The physical and 

behavioral properties of the eye are employed in biometrics 

based on the iris [6], face recognition [4], retina [7], 

periocular information [8], recordings of the raw eye 

position, velocity signal and pupil dilation [9, 10].   

In terms of its anatomical structure, the eye provides a 

unique opportunity for identification by containing a 

multitude of anatomical components that together comprise 

the so-called Oculomotor Plant (OP). These components 

are the eye globe and its surrounding tissues, ligaments, six 

extraocular muscles each containing thin and thick 

filaments, tendon-like components, various tissues and 

liquids [11]. The dynamic and static characteristics of the 

OP are represented by the eye globe's inertia, dependency 

of an individual muscle's force on its length and velocity of 

contraction, resistive properties of the eye globe, muscles 

and ligaments, frequency characteristics of the neuronal 

control signal sent by the brain to the extraocular muscle 

and the speed of propagation of this signal. Individual 

properties of the extraocular muscles vary depending on the 

role each muscle performs. There are two roles: the agonist 

- muscle contracts and pulls the eye globe in the required 

direction and the antagonist - muscle expands and resists 

the pull [12].  

Numerically evaluating the OP characteristics (OPC) 

could yield a highly counterfeit resistant biometric method 

because OPC represent dynamic behavioral and 

physiological human attributes that only exist in a living 

individual. Biometric authentication via OPC promises to 

be highly repeatable because any type of random stimulus 

ideally would produce the same OPC values. 

Accurate estimation of the OPC is challenging due to the 

secluded nature of the corresponding anatomical 

components, which necessitates indirect estimation and 

includes noises and inaccuracies associated with the eye 

tracking equipment, classification and filtering of the eye 

movement signal, mathematical representation of the OP, 

and actual algorithms for numerical estimation of OPC. 

This work addresses these challenges and presents methods 

that might eventually allow accurate authentication of an 

individual based on the anatomical characteristics of the OP 

using eye tracking technologies. 

Closely related work. In general the OPC biometrics 

approach presented here is similar to the one presented by 

Komogortsev and colleagues [13] however this work 

advances the state of the art in OPC biometrics via 

following major contributions: a) ability to process two 

dimensional eye movements vs. one dimensional ones by 

the use of a linear 2D mathematical model of the human eye 

b) very thorough  establishment of the baseline 

performance via use of more accurate/high sampling 
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frequency eye tracking equipment and a large amount of 

recorded eye movements c) addition of eye movement data 

filtering methods to ensure high quality biometric data d) 

use of different probabilistic approaches for person 

authentication e) use of information fusion methods. 

Methods applied in this work could achieve FAR and FRR 

rate of 15% within each single recording session vs. FAR of 

5.4% and FRR of 56.6% achieved by Komogortsev and 

colleagues within each single recording. 

2. Biometric Authentication via Anatomical 

Characteristics of the Oculomotor Plant 

2.1. Overview 

Figure 1 presents an overview of the proposed method. 

The recorded eye movement signal from an individual is 

supplied to the Eye Movement Classification module that 

classifies the eye position signal into fixations (movements 

that keep an eye focused on a stationary object of interest) 

and saccades (extremely rapid eye rotations between the 

points of fixation).  OPC can be extracted only from a 

dynamic eye movement such as saccade. Therefore, a 

sequence of classified saccades are sent to the second 

module labeled Oculomotor Plant Mathematical Model 

(OPMM), which generates simulated saccades’ trajectories 

based on the default OPC values that are grouped into a 

vector with the purpose of matching the simulated 

trajectories with the recorded ones. Each individual saccade 

is matched independently of any other saccade. Both 

recorded and simulated trajectories for each saccade are 

sent to the Error Function module where the error between 

the trajectories is computed. The error triggers the OPC 

Estimation module to optimize the values inside of the OPC 

vector and sends them to the OPMM to generate more 

accurate trajectories minimizing resulting error. After 

several iterations, when the minimum error is obtained, a 

sequence of the optimized OPC vectors is supplied to the 

Information 

Fusion and 

Person 

Authentication 

modules to 

authenticate a 

user. The Person 

Authentication 

module accepts 

or rejects a user 

based on the 

recommendation 

of a given 

classifier. The 

Information 

Fusion module 

aggregates 

information related to OPC vectors and works with the 

Person Authentication module to authenticate a person 

based on multiple classification sources. 

2.2. Eye Movement Classification 

An automated eye movement classification algorithm 

plays a crucial role in aiding the establishment of the 

invariant representation for the subsequent estimation of 

the OPC values. The goal of this algorithm is to 

automatically and reliably identify the beginning, end and 

all trajectory points from a very noisy and jittery eye 

movement signal.  The additional goal of the eye movement 

classification algorithm is to provide additional filtering for 

saccades to ensure their high quality and a sufficient 

quantity of data for the estimation of the OPC values. 

A standardized Velocity-Threshold (I-VT) algorithm 

[14] was selected due to its speed and robustness. A 

comparatively high classification threshold of 70°/s was 

employed to reduce the impact of trajectory noises at the 

beginning and the end of each saccade. Additional filtering 

discarded saccades with amplitudes of less than 5°, 

duration of less than 20 ms., and various trajectory artifacts 

that do not belong to normal saccades. 

2.3. Oculomotor Plant Mathematical Model 

The OPMM has to be able to quickly simulate accurate 

saccade trajectories while containing major anatomical 

components related to the OP. 

The linear homeomorphic 2D OP mathematical model 

developed by Komogortsev and Jayarathna [15] was 

selected. This OPMM, driven by twelve differential 

equations, is capable of simulating saccades with properties 

resembling normal humans on a 2D plane (e.g. computer 

monitor) by considering physical properties of the eye 

globe and four extraocular muscles: medial, lateral, 

superior, and inferior recti.  

 The following advantages are associated with a 

selection of this OPMM: 1) major anatomical components 

are present and can be estimated, 2) linear representation 

simplifies the estimation process of the OPC while 

producing accurate simulation data within the spatial 

boundaries of a regular computer monitor, 3) the 

architecture of the model allows dividing it into two smaller 

models of the form that is described by Komogortsev and 

Khan [16]. One of the smaller models becomes responsible 

for the simulation of the horizontal component of 

movement and the other for the vertical. Such assignment, 

while producing identical simulation results when 

compared to the full model, allows a significant reduction 

in the complexity of the required solution and allows 

simultaneous simulation of both movement components on 

a multi-core system. 

 

Buy SmartDraw!- purchased copies print this 

document without a watermark .

Visit www.smartdraw.com or call 1-800-768-3729.

Figure 1. Biometrics via anatomical 

characteristics of the Oculomotor Plant. 
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2.4. OPC vector 

The following subset of nine OPC was selected as a 

vector to represent an individual saccade for each 

component of movement (horizontal and vertical): length 

tension - the relationship between the length of an 

extraocular muscle and the force it is capable of exerting,  

series elasticity - resistive properties of an eye muscle while 

the muscle is innervated by the neuronal control signal, 

passive viscosity of the eye globe, force velocity 

relationship - the relationship between the velocity of an 

extraocular muscle extension/contraction and the force it is 

capable of exerting - in the agonist muscle, force velocity 

relationship in the antagonist muscle, eye globe inertia, 

agonist and antagonist muscles’ tension intercept that 

ensures an equilibrium state during an eye fixation at 

primary eye position, the agonist muscle’s tension slope, 

and the antagonist muscle’s tension slope. All tension 

characteristics are directly impacted by the neuronal 

control signal sent by the brain and therefore partially 

contain the neuronal control signal information.  

If both horizontal and vertical components of a saccade 

are considered, the resulting OPC vector would contain 

eighteen unique OPC. 

2.5. Error Function 

The goal of the Error Function module is to provide high 

sensitivity to any differences between the recorded and 

simulated saccade trajectories. 

The error function was implemented as the absolute 

difference between the saccades that are recorded by an eye 

tracker and saccades that are simulated by the OPMM.  

  ∑ |     |
 
     (1) 

where n is the number of points in a trajectory,    is a point 

in a recorded trajectory and      is a corresponding point in a 

simulated trajectory. The absolute difference approach 

provides an advantage over other estimations such as 

RMSE due to its higher absolute sensitivity to the 

differences between the trajectories. 

2.6. OPC Estimation 

The goal of the OPC estimation module is to provide a 

mechanism for optimizing the values in the OPC vector to 

ensure a minimum error between the simulated and 

recorded saccadic trajectories.  

The Nelder-Mead (NM) simplex algorithm [17] 

(fminsearch implementation in MATLAB) is used in a 

form that allowed simultaneous estimation of all OPC 

vector parameters at the same time. A lower boundary was 

imposed to prevent reduction of each individual OPC value 

to less than 10% of its default value. Stability degradation 

of the numerical solution for differential equations 

describing the OPMM served as an upper boundary 

indicator for each OPC parameter. 

2.7. Person Authentication 

The goal of the Person Authentication module is to 

confirm or reject claimed identity based on the comparison 

of the two sets of OPC vectors.  

One of the biggest challenges associated with the OPC 

biometrics is the amount of variability present in the 

estimated OPC. Experiments from which one might infer 

the variability of OPC values are almost non-existent in the 

OP literature. Usually, average numbers are derived from 

strabismus surgeries performed on a limited number of 

patients [18], and even from cat studies [19]. As a result it is 

hard to estimate a priori the amount of variability of the 

values for the OP properties in a large pool of normal 

humans. We hypothesize that a substantial amount of 

variability is present in the OPC to ensure accurate 

authentication. Therefore, authentication methods that 

allow addressing variability concerns are required to make 

OPC biometrics successful.  

Two classifiers fit this purpose: a) two-sample Student’s 

t-test [20] enhanced by voting and b) Hoteling's T-square 

test [21]. Both methods are able to perform acceptance and 

rejection tests. In the acceptance test, two datasets 

belonging to the same individual are compared. In the 

rejection test, the datasets are taken from different people. 

The outcome of each test determines the authentication 

accuracy of the corresponding authentication approach. 

2.7.1 Student’s t-test with Voting 

The following Null Hypothesis (H0) is formulated as a 

part of the Student’s t-test given that two sets of OPC 

vectors, one from the user i and the other from the user j, are 

compared: “H0:There is no difference between the OPC’s 

estimation sequences from the users i and j”. In order to 

make a conclusion about the difference between two users, 

the statistical significance (Plevel) resulting from the test is 

compared to the significance threshold α. If the resulting 

Plevel is smaller than α, the H0 is rejected indicating that the 

OPC estimation belongs to different people. Otherwise, the 

H0 is accepted indicating that the OPC estimation belongs 

to the same person. 

The Student’s t-test approach allows performing an 

authentication based on just a single OPC, therefore not 

taking immediate advantage of the potential information 

included in other OPC. In this work we enhance the 

Student’s t-test by considering voting methods described 

by Lam and Suen [22]. Such method accepts a person 

assuming that for at least k OPC the H0 is accepted and 

rejects a person if H0 is accepted  for less than k OPC. The 

performance of the Student’s t-test with voting is affected 

by the significance threshold and number of votes k. 

2.7.2 Hoteling’s T-square Test 

Hoteling’s T-square test [21] is a multivariate 

representation of the Student’s t-test and therefore provides 

an opportunity to assess the similarity of the multivariate 

distribution for the entire OPC vector instead of just single 
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parameter as it was done in the Student’s t-test. The 

performance of the Hoteling’s T-square test is only affected 

by the value of significance threshold. 

2.8. Information Fusion 

Information fusion techniques allow improvement of the 

overall accuracy of an authentication method by 

considering the information from multiple classifiers [23]. 

Fusion techniques are usually broken into two categories: 

a) fusion prior to matching and b) fusion after matching. 

Fusion prior to matching consolidates information for 

classifiers prior to the identity match. Fusion after matching 

consolidates classification results when identity decision is 

already made by each classifier. Both types of fusion are 

employed in our work to increase the accuracy of the 

OPC-based authentication. 

2.8.1 Fusion Prior to Matching 

Our fusion approach fuses OPC vectors estimated from 

horizontal and vertical movements taking advantage of the 

two dimensional Oculomotor plant model, effectively 

doubling the number of OPC parameters in the combined 

OPC vector. We call this type of fusion horizontal fusion  

2.8.2 Fusion After Matching 

In the fusion after matching category we consider a 

decision level fusion technique proposed by Daugman in a 

form of AND/OR approach [22]. For simplicity we call this 

method logical fusion. The AND method only accepts an 

individual if all of the classifiers accept the individual, 

therefore providing an opportunity to reduce the combined 

false acceptance rate and increase the resulting false 

rejection rate. The OR method only accepts an individual if 

one of the classifiers accepts such individual therefore 

providing an opportunity to increase the combined false 

acceptance rate and decrease the combined false rejection 

rate. 

3. Methodology 

3.1. Apparatus & Software 

The data was recorded using the EyeLink II eye tracker 

with a sampling frequency of 1000Hz [24]. The EyeLink II 

provides drift free eye tracking with a spatial resolution of 

0.01º, and 0.25-0.5º of positional accuracy. EyeLink II 

enables eye to camera distances between 60 and 150cm and 

horizontal and vertical operating range of 55° and 45° 

respectively. To ensure high accuracy of the eye movement 

recording a chin rest was employed. The chin rest was 

positioned to assure 70cm distance between the display 

surface and the eyes of the subject. 
The OPC biometrics architecture was implemented in 

MATLAB. All data was processed offline. 

3.1. Participants 

A total of 59 participants (46 males/13 females), ages 18 

– 45 years with an average age of 24 (SD=6.1), volunteered 

for the project.  Mean positional accuracy of the recordings 

averaged between all screen regions was 1.41º (SD=1.91º). 

All subjects participated in the two recording sessions 

that presented identical eye movement invocation tasks 

with approximately a 20 minute break between the 

sessions. Before each recording session, for each subject 

and eye movement invocation task, the eye tracking 

equipment was recalibrated to ensure high positional 

accuracy of the recorded data. 

3.2. Stimuli & Resulting Datasets 

The goal of the stimulus was to invoke a large number of 

vertical and horizontal saccades to allow reliable 

authentication. The stimulus was displayed as a jumping 

dot, consisting of a grey disc sized approximately 1º with a 

small black point in the center. The dot performed 100 

jumps horizontally and 100 jumps vertically. 

The amplitude of the vertical jumps was 20º for all 

subjects. However, horizontal jumps had the amplitude of 

20º for approximately half of the subjects (27) and 30º for 

another half (32). The variation in the horizontal 

amplitudes allowed assessing classification performance 

due to stimulus changes while fixed vertical amplitude 

allowed testing for the scalability of the OPC biometrics for 

a larger pool of individuals.  

The horizontal component of movement from horizontal 

saccades with 20º amplitude and the vertical component of 

movement from the vertical saccades with 20º amplitude 

obtained from first 27 subjects comprised Dataset I. The 

horizontal component of movement from horizontal 

saccades with 30º amplitude and the vertical component of 

movement from the vertical saccades with 20º amplitude 

recorded from the remaining 32 subjects comprised Dataset 

II. Dataset I+II combined data from datasets I and II.  

The use of just horizontal movement components from 

purely horizontal saccades and vertical component from 

purely vertical saccades allows substantial improvement of 

the quality of data employed for authentication by 

disregarding orthogonal movement jitter. Additionally, 

such eye movement data allows a subsequent check for 

saccade normality by filtering via the corresponding 

amplitude- duration and amplitude- maximum velocity 

relationships (main-sequence relationship) [12] and discard 

outliers.  

Each dataset represents the data from the first and second 

recording sessions for all subjects. Each subject in a dataset 

is represented by 30 “best” saccades in cases when only one 

movement component is considered and 60 in cases when 

both horizontal and vertical movement components are 

considered. Best saccades are defined as the saccades that 

produce the smallest error between the recorded and the 
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stimulated trajectory. Such filtering enables further 

improvement of the quality of the data employed for the 

authentication. 

3.3. Performance evaluation metrics  

The following metrics were employed to assess 

authentication accuracy:  

False Acceptance Rate (FAR) – expresses, in general, 

the probability that a given individual is falsely accepted 

into the system. This rate was computed as the number of 

rejection tests that failed (marking two different subjects as 

same person) divided by the total number of rejection tests 

performed. 

False Rejection Rate (FRR) – expresses, in general, the 

probability that a given individual is falsely rejected from 

the system while it should be accepted. In this work, the 

FRR was computed as the number of acceptance tests that 

failed (marking two datasets from the 

same person as being from different 

people) divided by the total number of 

acceptance tests performed. 

Half total error rate (HTER) is defined 

as the averaged combination of false 

acceptance and false rejection rates.  

4. Results 

Principal component analysis (PCA) 

was performed on nine OPC that comprise 

an OPC vector in an effort to reduce the 

number of parameters needed for the 

authentication. Results of PCA indicate 

that series elasticity, passive viscosity of 

the eye globe, eye globe’s inertia, agonist 

muscle’s tension slope, and the antagonist 

muscle’s tension slope account for 77% of 

total variance in the recorded data. Only 

authentication results involving these six 

OPC for each of the movement 

component are presented further by Table 

I. 

4.1. Equipment Calibration Impact 

Saccades employed from the same 

recording session for enrollment and 

authentication frequently resulted in the 

smaller HTER than in cases when 

saccades from one session were used for 

the enrollment and from another for the 

authentication. For example for the T(hor) 

method, Dataset I+II, single session 

HTER are 23-25.5%, while combined 

session increased HTER to 32%. We 

hypothesize that such differences might 

have occurred due to biases introduced by 

the calibration procedure and can be explained by 

mathematics employed in Eye Link eye tracker for 

calibration and subsequent interpolation of the eye gaze 

coordinates. 

During data collection all experimental parameters 

including the subject’s head and equipment placement were 

carefully controlled by using a chinrest with a goal of 

keeping them exactly the same between the recording 

sessions. However, the results of the calibration procedure 

which matches eye gaze vector with screen coordinates 

performed by the Eye Link eye tracker were different for 

each recording session for the same subject, within 

specified positional accuracy error. This phenomenon can 

possibly be explained by the calibration algorithms 

employed by the Eye Link eye tracker. The Eye Link 

system uses algorithms similar to Stampe’s [25], which 

employs 2D regression-based gaze interpolation between 

Table I. Performance of the OPC biometrics for various authentication methods and 

datasets expressed in the HTER (numbers show percentages). In the Methods & Data 

Description column T represents Hoteling’s T-square test and S represents Students 

t-test with voting. (hor) represents data from horizontal movement component of 

horizontal saccades, (ver) represents data from vertical movement of vertical saccades, 

(hor,ver) represents the case of horizontal data fusion. OR and AND represent logical 

fusion techniques. Dataset row indicates datasets described in Section 3.2 and Dataset 

I+II combines subjects’ records from Datasets I and II. Session row represents 

recording session data (Section 3.1), i.e. 1 indicates that first half of the saccades from 

session 1 was employed for the enrollment and the other half was employed for the 

authentication and 1+2 indicates that the saccades from session 1 were employed for 

the enrollment and saccades from session 2 were employed for the authentication and 

vice versa. Note that results related to Students t-test with voting represent values 

obtained with 4 votes (8 votes in case of horizontal fusion). Significance threshold α for 

Students t-test and Hoteling’s T-square test was 0.1 

Dataset

Session 1 2 1+2 1 2 1+2 1 2 1+2

1 29 24.5 34 25.5 35 36.5 23 25.5 32

2 35 33 36.5 30 42.5 35.5 33 36 34

3 22 29.5 38.5 31 33 37 25 29 35.5

4 22 29.5 36 44 43.5 40 38.5 37 36

5 T(hor,ver) 32.5 18.5 25 22.5 36 35 25 26.5 29.5

6 S(hor,ver) 24 30.5 31.5 30.5 33.5 33.5 22.5 26.5 32

7 29.5 28.5 31 28.5 35.5 33 24 27.5 31.5

8 36.5 33 33.5 33.5 42.5 35.5 50 50 33.5

9 23.5 32.5 31.5 31.5 34 36.5 27 33.5 32

10 24.5 33 33 39 41 39 29 36.5 33.5

11 28.5 23 33 28.5 35 33.5 24.5 25.5 30

12 34 33 32.5 34.5 45 34 32.5 37 32

13 32 21 35 29.5 40.5 38.5 28.5 28.5 35

14 28.5 23 28.5 30.5 31.5 42.5 24 27 33.5

15 24 24 35 22.5 37.5 35.5 25.5 27 34

16 24 26 37.5 24.5 33.5 41 21.5 23.5 38

T(ver)

Method & 

Data 

Description

 I II I+II

T(hor)

S(hor)

S(ver)

T(hor) OR  T(ver)

S(hor) OR  S(ver)

T(hor) OR  S(hor)

T(ver) OR  S(ver)

T(hor,ver) AND S(hor,ver)

T(hor,ver) OR S(hor,ver)

T(hor) AND  S(hor)

T(ver) AND  S(ver)

T(hor) AND  T(ver)

S(hor) AND  S(ver)
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the calibration points. Stampe’s algorithms do not 

guarantee head pose invariance. As a result the 

interpolation is extremely sensitive to even slight 

differences in estimation of the eye-gaze direction for any 

point (especially in periphery) in the calibration map and 

even the slightest changes in subject’s head position are 

translated into substantial calibration biases present in the 

recorded data. We hypothesize that the application of the 

3D model-based eye-gaze estimation [26] as a part of the 

calibration and eye gaze components might prove 

beneficial for the OPC biometrics due to higher head pose 

invariance. However very high-sampling frequency 

commercial eye-tracking systems that use such type of gaze 

estimation are not available yet. 

4.2. Impact of Person Authentication Methods 

As shown in rows 1-4 in Table I, Hoteling’s T-square test 

in general produced slightly more accurate authentication 

results than Student’s t-test with voting for all datasets 

under consideration. For example, in Dataset I+II, the 

Hoteling’s T square test produced HTER of 32% for 

horizontal while Student’s t-test with voting produced 

HTER of 35.5%. 

4.3. Impact of 2D Eye Movements & Horizontal 

Fusion 

In rows 7-8 of Table I, the consideration of both the 

vertical and horizontal components of the eye movements 

via horizontal and vertical fusion ensured slightly more 

accurate authentication. This trend was true for both 

Hoteling’s T-square test and Student’s t-test with voting. 

For example in Dataset I+II the results of the Hoteling’s T 

square test produced HTER of 32% for horizontal and 34% 

for vertical data; however, the use of vertical and horizontal 

components of movement via horizontal fusion reduced 

HTER to 29.5%. 

4.4. Impact of Logical Fusion 

According to rows 7-14 in Table I, application of logical 

fusion provided a slight increase in the authentication 

accuracy when compared to pure person authentication 

methods. For example, in Dataset I+II, Hoteling’s T square 

test for the horizontal component  produced HTER of 32% 

and Student’s t-test with voting produced HTER of 35.5%; 

however, logical fusion reduced the HTER to 30% (row 

11).     

Logical fusion did not always provide the improvement 

in accuracy when compared to horizontal/vertical fusion. 

For example, in Dataset I+II, Hoteling’s T square test with 

horizontal fusion yielded HTER of 29.5% and all logical 

fusion methods provided HTER that was slightly higher. 

Approaches that involved both logical and horizontal 

and vertical fusion  

4.5. Impact of Stimuli Properties 

The results from horizontal data presented in row 1 and 3 

of Table I did not indicate large changes when different 

amplitude of step stimulus was presented. The 

corresponding HTERs were 4-16.5% smaller within each 

single session than between sessions for the group of 

subjects with presented stimulus amplitude of 30° and the 

group of subjects presented with stimulus amplitude of 20°. 

Multiple session results differed slightly by <2%. 

For the Dataset I+II, where different stimulus amplitudes 

were used for different subject groups, the accuracy of 

authentication was improved by 1-4.5%. This result 

suggests that stimulus amplitude does impact the results of 

biometric authentication, however slightly.  Additional 

research is required for additional clarification. 

4.6. Scalability of the OPC biometrics 

The results from the vertical data presented in row 2 and 

4 of the Table I indicate the scalability potential of the OPC 

biometrics, because horizontal component of movements 

considers saccades of the same amplitude. When the 

amount of subjects was increased from 27 to 59 the results 

of the authentication did not change significantly. The 

corresponding HTER remained almost the same for both 

Students t-test and Hoteling’s T-square test. Multiple 

session results also were affected very slightly with 

accuracy decreasing by 1.5-4.5% in terms of HTER for 

both authentication methods for the larger group of 

subjects.  

4.7. Receiver Operating Characteristics Curve 

Figure 2 presents a Receiver Operating Characteristics 

(ROC) curve. The results include a mix of best performing 

methods with and without fusion according to the 

corresponding HTER for the data from Table I.  

5. Limitations 

Recording Equipment: The OPC biometrics 

exploration done in this work was conducted on very 

accurate eye tracking equipment with a very high sampling 

rate. Subjects were positioned in a chinrest to avoid 

potential accuracy issues. Additional research is required to 

understand the tradeoffs between the authentication 

accuracy of the OPC biometrics and equipment’s sampling 

rate, positional accuracy, and freedom of head movements. 

Calibration: The results indicate that there is a large 

impact of calibration methods on the resulting accuracy of 

authentication, necessitating further investigation into 

making OPC biometrics components less dependent on the 

calibration or/and employing eye tracking calibration 

techniques that maintain calibration consistency between 

the recording sessions. 

Stimulus: The jumping dot stimulus employed in this 
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work was purposefully fixed in amplitude and exhibited a 

large number of jumps. Such fixed experimental 

parameters allowed us to establish a baseline for the OPC 

biometric performance in an environment that is close to 

ideal. However, additional work is required to understand 

the OPC biometric performance for saccades that have 

randomized amplitudes, various spatial placement, and 

different quantities.  

OPC Estimation Speed: The estimation of an optimal 

OPC vector containing nine parameters from a single 

saccade takes on average two hours on an Intel Q6600 

processor, using one core and assuming MATLAB 

implementation of the fminsearch function. However, the 

OPC biometrics architecture is highly parallelizable, with 

each individual saccade trajectory easily processed by a 

separate core. Additionally, implementation in a 

programming language such as C/C++ might speed up the 

estimation process.  

The linear design of the OPMM makes it possible to seek 

analytical solutions to the differential equations describing 

the model, therefore providing an opportunity for the direct 

extraction of the OPC from saccade trajectories. However 

the search for such a solution presents a substantial 

analytical challenge and will be explored in future work. 

Stability of the OPC trait: The time interval between 

the recording sessions for each subject was approximately 

20 min. Such a time difference provides 

extremely limited insight in terms of the 

stability of the OPC biometrics over a 

longer time span and impact of such 

factors as stress, fatigue, aging and 

illness.  Additional research needs to be 

conducted to explore the long term 

stability of the OPC trait. 

6. Discussion 

Highest Possible Accuracy between 

Multiple Sessions: It is possible to 

perform an authentication selecting 

“best” combination of OPC for each 

dataset, session set, and authentication 

method. These best combinations, in the 

multiple session categories, allow 

reducing the HTER by 4-9% compared to 

the results presented by Table II. The best 

combination of OPC parameters for 

Dataset I+II, Session 1+2 with a single 

authentication method provided the 

HTER of 29% in case of S(hor) method. 

The best overall result in the Database 

I+II, Session 1+2 aided by horizontal and 

logical fusion was produced by 

T(hor,ver) OR S(hor,ver) method with 

HTER of 25% (FAR=25%, FRR=25%). 

The ROC curve for the best performing 

method is displayed by Figure 2. 

Highest Possible Accuracy within Single Sessions: 

The best combination of OPC parameters for Dataset I+II 

within a single session and a single authentication method 

achieved the HTER of 16.5% (FAR=16% and FRR=17%) 

for T(hor) method during Session 1. Overall best 

performance in the Database I+II, Session 1+2 aided by 

horizontal and logical fusion was produced by T(hor,ver) 

OR S(hor,ver) method with HTER of 15% (FAR=15%, 

FRR=15%). The ROC curve for the best performing 

method is displayed by Figure 2. 

Large difference in the performance in cases when 

saccades from different and the same session (HTER=25% 

vs. HTER=15%) are employed for the enrollment and 

verification again support the hypothesis that eye tracker 

calibration methods might be responsible for such 

differences. Future investigation that involves eye tracking 

equipment with different calibration methods is required. 

7. Conclusion and Future Work 

This paper outlined and explored a novel biometrics 

approach that allows person identification via anatomical 

characteristics of the Oculomotor Plant (OP). Given the 

limited pool of 59 volunteers, the OPC biometrics in the 

authentication mode achieved the HTER of 25% in the 

Figure 2. Receiver Operating Characteristic curves for best performing methods of 

biometric authentication via OPC. Biometric methods and datasets are coded similar to 

the data presented in Table I. 
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optimal set of the OPC parameters and when eye movement 

records were affected by the eye tracking equipment 

calibration biases. When the impact of the calibration 

procedure was removed the resulting HTER was 15% in the 

best case.  

Among statistical methods employed for person 

authentication Hoteling’s T-square test in general provided 

higher accuracy. Information fusion prior to matching, 

combining horizontal and vertical components, achieved 

slightly higher authentication accuracy than when no fusion 

was performed. The same was true for the logical fusion 

methods employed after the initial match was done by a 

separate person authentication method. Application of both 

information fusion types at the same time, in general, did 

not provide higher authentication accuracy than 

employment of a single type of a fusion method. An 

increase in the number of subjects from 27 to 59 did not 

decrease the authentication performance. The assignment 

of different stimuli amplitudes to different subject groups 

very slightly improved authentication accuracy. 

It is important to conduct more work to ensure OPC 

biometrics independence from equipment calibration 

biases, because this is the main factor degrading 

authentication performance. Additional work should be 

performed to allow faster estimation of the OPC values. 

The stability of biometrics needs to be verified against a 

more diverse array of stimuli, eye tracking equipment, 

larger group of subjects and a longer time span.  
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