|
|
|
|
|

Logic Coverage

fragment P: fragment Q:
if (A} B} C) if (A)
{ {
m(); m();
} return;
retum; }
if (B)
{
m();
return;
}
if (C)
{
m();
}

B Give a GACC test set for fragment P. (Note that GACC, CACC, and
RACC yield identical test sets for this example.)

8 Does the GACC test set for fragment P satisfy edge coverage on fragment
Q?

B Write down an edge coverage test set for fragment Q. Make your test set
include as few tests from the GACC test set as possible.

4. (Challenging!) For the TriTyp program, complete the test sets for the following
coverage criteria by filling in the “don’t care” values, ensuring reachability,
and deriving the expected output. Download the program, compile it, and
run it with your resulting test cases to verify correct outputs.

@ Predicate coverage (PC)

@ Clause coverage (CC)

&8 Combinatorial coverage (CoC)

@ Correlated active clause coverage (CACC)
5. Repeat the prior exercise, but for the TestPat program in Chapter 2.
6. Repeat the prior exercise, but for the Quadratic program in Chapter 2.

3.4 SPECIFICATION-BASED LOGIC COVERAGE

Software specifications, both formal and informal, appear in a variety of forms and
languages. They almost invariably include logical expressions, allowing the logic
coverage criteria to be applied. We start by looking at their application to simple
preconditions on methods.

Programmers often include preconditions as part of their methods. The precon-
ditions are sometimes written as part of the design, and sometimes added later as
documentation. Specification languages typically make preconditions explicit with
the goal of analyzing the preconditions in the context of an invariant. A tester may
consider developing the preconditions specifically as part of the testing process if
preconditions do not exist. For a variety of reasons, including defensive program-
ming and security, transforming preconditions into exceptions is common practice.
In brief, preconditions are common and rich sources of predicates in specifications,

131

132 Coverage Criteria

public static int cal (int month1, int day1, int month2,
int day2, int year)

e e ke e e ok ok ok e Rk ok ke ke o R e ok ok ke ok o ko ok e ke

// Calculate the number of Days between the two given days in
// the same year.
// preconditions : day1 and day2 must be in same year

// 1 <= month1, month2 <= 12
// 1 <= day1, day2 <= 31

// month1 <= month2

// The range for year: 1 ... 10000

//i******i*i*i****ii*i*i***iii*i*i*i*iii**i*i*ii**i*i**iii*i*

int numDays;

if (month2 == month1) // in the same month
numDays = day?2 - day1;
else
{
// Skip month 0.
int daysIn[] = {0, 31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
// Are we in a leap year?
int m4 = year % 4;
int m100 = year % 100;
int m400 = year % 400;
if ({m4 '=0) || ((m100 == 0) && (m400 != 0)))
daysIn[2] = 28;
else
daysIn[2] = 29;

// start with days in the two months
numDays = day2 + (daysIn[month1] - day1);

// add the days in the intervening months
for (int i = month1 + 1; i <= month2-1; i++)
numbDays = daysIn[i] + numDays;

return {(numbDays);

}

Figure 3.4. Calendar method.

and so we focus on them here. Of course, other specification constructs, such as
postconditions and invariants, also are rich sources of complex predicates.

Consider the cal method in Figure 3.4. The method lists explicit preconditions in
natural language. These can be translated into predicate form as follows:

monthl >= 1 A monthl <= 12 A month2 >= 1 A month2 <= 12 A monthl <= month2
Adayl >=1 A dayl <= 31 Aday2 >= 1 Aday2 <= 31 A year >= 1 A year <= 10000

The comment about dayl and day?2 being in the same year can be safely ig-
nored, because that prerequisite is enforced syntactically by the fact that only one
parameter appears for year. It is probably also clear that these preconditions are not
complete. Specifically, a day of 31 is valid only for some months. This requirement
should be reflected in the specifications or in the program.

This predicate has a very simple structure. It has eleven clauses (which sounds
like a lot!) but the only logical operator is “and.” Satisfying predicate coverage
for cal() is simple - all clauses need to be true for the true case and at least one
clause needs to be false for the false case. So (monthl = 4, month2 = 4, dayl = 12,
day?2 = 30, year = 1961) satisfies the true case, and the false case is satisfied by vi-
olating the clause monthl <= month2, with (monthl = 6, month2 = 4, dayl = 12,
day2 = 30, year = 1961). Clause coverage requires all clauses to be true and false.

= o 4 = = 4 e 4 = L
EE I T T e S S S I S ey | e
o e e WL e
B i i i o I T T VI I I TF s S)
i A e R i ad Y SRS P
i I e e e R L NI RS P R)

1
1
1
1
1
1
1
1
1
1
E|
1

i e e e | o RV RSV I e]
4= 4 Ll 4 4 e e e e
i e B N e o e R S R SV i R]
At L e e e e o 4 4

4 =0000T > A4
4=1<A4
4=TE>2P
4=1T<ZP
4=1E>1pP
4=T<TP
4=zw>TWw
4=zZrT>2Ww
d=1T<zw
4=2ZT> W
4=T<TW
L1=1T<TW

daAMFIBONGR O AN
R

0000T >4 T<A TE>ZP T<ZP TESTP TTP TW>TW ZT>ZW T<gw ZI>TW T<TW

suojypuosaid ()1ed 10} 85eIaA02 9SNE|D SAIIOER PIIR|3LI0) "9'E J[qel

[— e —

(W]
[32]
Lo

134

Coverage Criteria

We might try to satisfy this requirement with only two tests, but some clauses are
related and cannot both be false at the same time. For example, monthl cannot
be less than 1 and greater than 12 at the same time. The true test for predicate
coverage allows all clauses to be true, then we use the following tests to make
each clause false: (monthl = —1, month2 = -2, dayl =0, day2 = 0, year = 0) and
(monthl = 13, month2 = 14, dayl = 32, day2 = 32, year = 10500).

We must first find how to make each clause determine the predicate to ap-
ply the ACC criteria. This turns out to be simple with disjunctive normal form
predicates—all we have to do is make each minor clause true. To find the remaining
tests, each other clause is made to be false in turn. Therefore, CACC (also RACC
and GACC) is satisfied by the tests that are specified in Table 3.6. (To save space,
we use abbreviations of the variable names.)

EXERCISES
Section 3.4.

Consider the remove() method from the Java Iterator interface. The remove()
method has a complex precondition on the state of the Iterator, and the pro-
grammer can choose to detect violations of the precondition and report them as
IllegalStateException.

1. Formalize the precondition.

2. Find (or write) an implementation of an Iterator. The Java Collection classes
are a good place to search.

3. Develop and run CACC tests on the implementation.

3.5 LOGIC COVERAGE OF FINITE STATE MACHINES

Chapter 2 discussed the application of graph coverage criteria to finite state ma-
chines (FSMs). Recall that FSMs are graphs with nodes that represent states and
edges that represent transitions. Each transition has a pre-state and a post-state.
FSMs usually model behavior of the software and can be more or less formal and
precise, depending on the needs and inclinations of the developers. This text views
FSMs in the most generic way, as graphs. Differences in notations are considered
only in terms of the effect they have on applying the criteria.

The most common way to apply logic coverage criteria to FSMs is to use logical
expressions from the transitions as predicates. In the Elevator example in Chapter 2,
the trigger and thus the predicate is openButton = pressed. Tests are created by
applying the criteria from Section 3.2 to these predicates.

Consider the example in Figure 3.5. This FSM models the behavior of the mem-
ory seat in a car (Lexus 2003 ES300). The memory seat has two configurations for
two separate drivers and controls the side mirrors (sideMirrors), the vertical height
of the seat (seatBottom), the horizontal distance of the seat from the steering wheel
(seatBack), and the lumbar support (lumbar). The intent is to remember the config-
urations so that the drivers can conveniently switch configurations with the press of
a button. Each state in the figure has a number for efficient reference.

1
Driver 1
Configuration

Press sideh®——= 1
[lgni¥en =271

S hton

gnitioh = off BHE=2°

=23
)
sideMorz if
It !g_"_/f,g; 2

—

4
New Configurazz—
Drivert

=zure 3.5. FSM fcr 3

The initial sta*z
%18 last shut dowr.,
= modify the ¢zz
~ 2 mIrrors, moy—
— ~difying the he—:
F24on is on (a gu
—-zssing either Bo=
7w the configz—z1
Trzse are safety ¢
- zo flying arouzZ

When the drivz
— - Ffied configerz1
-z Reset button -
s —Sguration is s=x

This type of F1
77 issues must bz

= zes. Guards arz
: 7=zt and so shoz]
recification lapgzs
=~ SCR, if an eve=?
¥Troession must €%

Logic Coverage

Button2 [Gear = Park OR

1 Ignition = off] 2
Dr_lver 1_ Buttont | Gear = Park OR Dr_lver 2
Configuration Ignition = off | Configuration

seatBack button
Ignition = on}

[Ignition = on sideMirrors buttol
[tgnition = on]
Button] [\Gear = Park OR 3 2 4R
ignitiof = off ~ fgnition = off | Modified Ignition = off] ignitiofi = off
Configuration
‘eset and Button1 Reset and Bulton2
[Ignition = on] [Ignition = gn}
sgatBAck bojton
Ignftion = oY) lumbar button
IyMmbat bytton gnition = on]
gnjtiory= on] .
sideMifrogs button
sealBoftord buston { \gnition\= on}
Igyitioft = gin]
) eatBottom Rutton
stdeMirrofs Butigh laniorm= o]
[ignitjon £ ont
seatBack bulon
[Ignition = o
4 5
New Configuration New Configuration
Driver1 Driver2

Figure 3.5. FSM for a memory car seat — Lexus 2003 ES300.

The initial state of the FSM is whichever configuration it was in when the system
was last shut down, either Driver 1, Driver 2, or Modified Configuration. The drivers
can modify the configuration by changing one ‘of the four controls; changing the
side mirrors, moving the seat backwards or forwards, raising or lowering the seat, or
modifying the lumbar support (triggering events). These controls work only if the
ignition is on (a guard). The driver can also change to the other configuration by
pressing either Buttonl or Button2 when the ignition is on. In these cases, the guards
allow the configuration to be changed only if the Gear is in Park or the ignition is off.
These are safety constraints, because it would be dangerous to allow the driver’s seat
to go flying around when the car is moving.

When the driver changes one of the controls, the memory seat is put into the
modified configuration state. The new state can be saved by simultaneously pressing
-he Reset button and either Buttonl or Button2 when the ignition is on. The new
configuration is saved permanently when the ignition is turned off.

This type of FSM provides an effective model for testing software, although sev-
2ral issues must be understood and dealt with when creating predicates and then test
values. Guards are not always explicitly listed as conjuncts, but they are conjuncts in
zffect and so should be combined with the triggers using the AND operator. In some
specification languages, most notably SCR, the triggers actually imply two values.
22 SCR, if an event is labeled as triggering, it means that the value of the resulting
=xpression must explicitly change. This implies two values, a before value and an

135

136

Coverage Criteria

Table 3.7. Predicates from memory seat example

Pre-state Post-state Predicate
1 2 Button2 A (Gear = Park V ignition = off)
1 3 sideMirors A ignition = on
1 3 seatButton A ignition = on
1 3 lumbar A ignition = on
1 3 seatBack A ignition = on
2 1 Buttonl A (Gear = Park v ignition = off)
2 3 sideMirors A ignition = on
2 3 seatButton A ignition = on
2 3 lumbar A ignition = on
2 3 seatBack A ignition = on
3 1 Buttonl A (Gear = Park v ignition = off)
3 2 Button2 A (Gear = Park v ignition = off)
3 4 Reset A Buttonl A ignition = on
3 5 Reset A Button2 A ignition = on
4 1 ignition = off
4 3 sideMirors A ignition = on
4 3 seatButton A ignition = on
4 3 lumbar A ignition = on
4 3 seatBack A ignition = on
5 2 ignition = off
5 3 sideMirors A ignition = on
5 3 seatButton A ignition = on
5 3 lumbar A ignition = on
5 3 seatBack A ignition = on

after value, apd is modeled by introducing a new variable. For example, in the
memory seat example, the transition from New Configuration Driver 1 to Driver 1
Configuration is taken when the ignition is turned off. If that is a triggering tran-
sition in the SCR sense, then the predicate needs to have two parts: ignition = on A
ignition’ = off. ignition’ is the after value.

The transitions from Modified Configuration to the two New Configuration states
demonstrate another issue. The two buttons Reset and Buttonl (or Button2) must
be pressed simultaneously. In practical terms for this example, we would like to test
for what happens when one button is pressed slightly prior to the other. Unfortu-
nately, the mathematics of logical expressions used in this chapter do not have an
explicit way to represent this requirement, thus it is not handled explicitly. The two
buttons are connected in the predicate with the AND operator. In fact, this is a
simple example of the general problem of timing, and needs to be addressed in the
context of real-time software.

The predicates for the memory seat example are in Table 3.7 (using the state
numbers from Figure 3.5).

The tests to satisfy the various criteria are fairly straightforward and are left to
the exercises. Several issues must be addressed when choosing values for test cases.
The first is that of reachability; the test case must include prefix values to reach the
pre-state. For most FSMs, this is just a matter of finding a path from an initial state
to the pre-state (using a depth first search), and the predicates associated with the

transitions are sZ_
states, and the =1
state the system |
solution preser:s:
pushing Button -
Zonfiguration siz::
state. If the svsiz3
:hree cases, the =
Some FSMs =
g these values &
“om the post-siz7
s1ate, so this stzT
zase (verificatic= "
<rint the currez:
The exact form 27
—ot be finalized .=
One major 221
== is simply the T
ransition to be <
~2n to be false: -1
> this rule is =)
-—edicate for =:i
—ost-state of the =
4750, if a trapsit o
z~e the same a-Z
‘rlse.
The final p=c:
»z21 case values. =
“=e potential £z0
-2 converted in:o
=th FSMs and =
~=es this step =
—-ogram input
—zthod calls a=Z
Teaonl()). At
Torning seeming |
-1 or methet 2
“~us a general sZ|

THERCISES
Section 3.5.

1. For the Xz
lowing ¢z
and comzrl
Predicz=
@ Correlz!
Generc.

Logic Coverage

transitions are solved to produce inputs. The memory seat example has three initial
states, and the tester cannot control which one is entered because it depends on the
state the system was in when it was last shut down. In this case, however, an obvious
solution presents itself. We can begin every test by putting the Gear in park and
pushing Button 1 (part of the prefix). If the system is in the Driver 2 or the Modified
Configuration state, these inputs will cause the system to transition to the Driver 1
state. If the system is in the Driver 1 state, these inputs will have no effect. In all
three cases, the system will effectively start in the Driver 1 state.

Some FSMs also have exit states that must be reached with postfix values. Find-
ing these values is essentially the same as finding prefix values; that is, finding a path
from the post-state to a final state. The memory seat example does not have an exit
state, so this step can be skipped. We also need a way to see the results of the test
case (verification values). This might be possible by giving an input to the program to
print the current state, or causing some other output that is dependent on the state.
The exact form and syntax this takes depends on the implementation, and so it can-
not be finalized until the input-output behavior syntax of the software is designed.

One major advantage of this form of testing is determining the expected output.
It is simply the post-state of the transition for the test case values that cause the
transition to be true, and the pre-state for the test case values that cause the transi-
tion to be false (the system should remain in the current state). The only exception
to this rule is that occasionally a false predicate might coincidentally be a true
predicate for another transition, in which case the expected output should be the
post-state of the alternate transition. This situation can be recognized automatically.
Also, if a transition is from a state back to itself, then the pre-state and the post-state
are the same and the expected output is the same whether the transition is true or
false.

The final problem is that of converting a test case (composed of prefix values,
test case values, postfix yalues, and expected output) into an executable test script.
The potential problem here is that the variable ‘assignments for the predicates must
be converted into inputs to the software. This has been called the mapping problem
with FSMs and is analogous to the internal variable problem of Section 3.3. Some-
times this step is a simple syntactic rewriting of predicate assignments (Buttonl to
program input buttonl). Other times, the input values can be directly encoded as
method calls and embedded into a program (for example, Buttonl becomes press-
ButtonlI()). At other times, however, this problem is much greater and can involve
turning seemingly small inputs at the FSM modeling level into long sequences of in-
puts or method calls. The exact situation depends on the software implementation;
thus a general solution to this problem is elusive at best.

EXERCISES
Section 3.5.

1. For the Memory Seat finite state machine, complete the test sets for the fol-
lowing coverage criteria by satisfying the predicates, ensuring reachability,
and computing the expected output.

@ Predicate coverage
@ Correlated active clause coverage
B General inactive clause coverage

137

