
Clean room Software Engineering for Zero- Defect Software

Richard C. Linger

IBM Cleanroom Software Technology Center
100 Lakeforest Blvd.

Gaithersburg, MD 20877

Abstract
Cleanroom software engineering is a theory-based,

team-oriented process for developing very high quality
software under statistical quality control. Cleanroom
combines formal methods of object-based box struc-
ture specification and design, function- theoretic cor-
rectness veri/ication, and statistical usage testing for
quality certification, to produce sofmare that is zero
defects with high probability. Cleanroom manage-
ment is based on a l fe cycle of incremental develop-
ment of user- function sofmare increments that
accumulate into the PnaI product. Cleanroom teams
in IBM and other organizations are achieving remark-
able quality results in both new system development
and modifications and extensions to existing systems.

Keywords. Cleanroom software engineering, formal
specification, box structures, correctness verification,
statistical usage testing, software quality certification,
incremental development.

Zero-defect software
On first thought, zero-defect software may seem

an impossible goal. After all, the experience of the
first human generation in software development has
reinforced the seeming inevitability of errors and per-
sistence of human fallibility. Today, however, a new
reality in software development belies this first gener-
ation experience [11. Although it is, theoretically
impossible to ever know for certain that a software
product has zero defects, it is possible to know that
it has zero defects with high probability. Cleanroom
software engineering teams are developing software
that is zero defects with high probability, and doing
so with high productivity. Such performance
depends on mathematical foundations in program
specification, design, correctness verification, and sta-
tistical quality control, as well as on engineering dis-
cipline in their application.

In traditional software development, errors were
regarded as inevitable. Programmers were urged to
get software into execution quickly, and techniques
for error removal were widely encouraged. The
sooner the software could be written, the sooner
debugging could begin. Programs were subjected to
private unit testing and debugging, then integrated
into components with more debugging, and finally
into subsystems and systems with still more debug-
ging. At each step, new interface and design errors
were found, many the result of debugging in earlier
steps. Product use by customers was simply another
step in debugging, to correct errors discovered in the
field. The most virulent errors were usually the
result of fixes to other errors in development and
maintenance [2]. It was not unusual for software
products to reach a steady-state error population,
with new errors introduced as fast as old ones were
fixed. Today, debugging is understood to be the
most error-prone process in software development,
leading to "right in the small, wrong in the large"
programs, and nightmares of integration where all
parts are complete but do not work together because
of deep interface and design errors.

In the Cleanroom process, correctness is built in
by the development team through formal specifica-
tion, design, and verification [3]. Team correctness
verifcation takes the place of unit testing and debug-
ging, and software enters system testing directly,
with no execution by the development team. All
errors are accounted for from first execution on, with
no private debugging permitted. Experience shows
that Cleanroom software typically enters system
testing near zero defects and occasionally at zero
defects.

The certification (test) team is not responsible for
testing in quality, an impossible task, but rather for
certifying the quality of software with respect to its
specification. Certification is carried out by statis-
tical usage testing that produces objective assess-
ments of product quality. Errors, if any, found in

2
0210-5267193 $03.00 0 1993 IEEE

testing are returned to the development team for cor-
rection. If quality is not acceptable, the software is
removed from testing and returned to the develop-
ment team for rework and reverification.

The process of Cleanroom development and cer-
tification is carried out incrementally. Integration is
continuous, and system functionality grows with the
addition of successive increments. When the final
increment is complete, the system is complete.
Because at each stage the harmonious operation of
future increments at the next level of refinement is
predefmed by increments already in execution, inter-
face and design errors are rare.

The Cleanroom process is being successfully
applied in IBM and other organizations. The tech-
nology requires some training and practice, but
builds on existing skills and software engineering
practices. It is readily applied to both new system
development and re-engineering and extension of
existing systems. The IBM Cleanroom Software
Technology Center (CSTC) [4] provides technology
transfer support to Cleanroom teams through educa-
tion and consultation.

Cleanroom quality results
Table 1 summarizes quality results from

Cleanroom projects. Earlier results are reported in
[SI. The projects report a ”certification testing
failure rate;” for example, the rate for the IBM Flight
Control project was 2.3 errors per KLOC, and for
the IBM COBOL Structuring Facility project, 3.4
errors per KLOC. These numbers represent all
errors found in all testing, measured from first-ever
execution through test completion. That is, the rates
represent residual errors present in the software fol-
lowing correctness verification by development
teams.

The projects in Table 1 produced over a half a
million lines of Cleanroom code with a range of 0 to
5.1 errors per KLOC for an average of 3.3 errors per
KLOC found in all testing, a remarkable quality
achievement indeed.

Traditionally developed software does not
undergo correctness verification. It goes from devel-
opment to unit testing and debugging, then more
debugging in function and system testing. At entry
to unit testing, traditional software typically exhibits
30-50 errors/KLOC. Traditional projects often
report errors beginning with function testing (or
later), omitting errors found in private unit testing.

A traditional project experiencing, say, five
errors/KLOC in function testing may have encount-
ered 25 or more errors per KLOC when measured
from first execution in unit testing. Quality compar-
isons between traditional and Cleanroom software
are meaningful when measured from first execution.

Experience has shown that there is a qualitative
difference in the complexity of errors found in
Cleanroom and traditional code. Errors left behind
by Cleanroom correctness verification, if any, tend to
be simple mistakes easily found and fixed by statis-
tical testing, not decp design or interface errars.
Cleanroom errors are not only infrequent, but
usually simple as well.

Highhghts of Cleanroom projects reported in
Table 1 are described below:

IBM Flight Control. A III-I60 helicopter avionics
component was developed on schedule in three
increments comprising 33 KLOC of JOVIAL [SI.
A total of 79 corrections were required during statis-
tical certification for an error rate of 2.3 errors per
KLOC for verified software with no prior execution
or debugging.

IBM COBOL Structuring Facility (COBOL/SI;).
COBOL/SF, IBM’s first commercial Cleanroom
product, was developed by a six-person team. The
product automatically transforms unstructured
COBOL programs into functionally equivalent struc-
tured form for improved understandability and main-
tenance. It makes use of proprietary graph-theoretic
algorithms, and exhibits a level of complexity on the
order of a COBOL compiler.

The current version of the 85 KLOC PL/I
product required 52 KLOC of new code and 179
corrections during statistical certification of five
increments, for a rate of 3.4 errors per KLOC [7].
Several major components completed certification
with no errors found. In an early support program
at a major aerospace corporation, six months of
intensive use resulted in no functional equivalence
errors ever found [SI. Productivity, including all
specification, design, verification, certification, user
publications, and management, averaged 740 LOC
per person-month. Challenging schedules defined for
competitive reasons were all met. A major benefit of
Cleanroom products is dramatically reduced mainte-
nance costs. COBOL/SF has required less than one
person-year per year for all maintenance and cus-
tomer support.

3

I Table 1. Cleanroom Quality Results

1987 Clemroom IBM Fll&ht Control: Helieopter Avionia System Component Certiflation testing failure nte: 1.3 erron/KLOC
Sortmn 33 KLOC (Jmiai)
Engineering Error-fix rsduced Sx

Clelnmom IBM COBOL Strudurlng Faality: Pmdud for automatially IBM's flnt Clnnmom pmdud
CertifiaUon testing failure nk 3.4 errors/KLOC

Pmdudivity 740 LOC/PM
Deolmment failures 0.1 erron/KLOC. all simole flxes

restructuring COBOL programs
BS KLOC (PL/I)

1991

1991

NASA Satellite Control Project 1
40 KLOC (FORTRAN)

Engineering

Sortware
Engineering

Cleanroom

Engineering

Partial C l e m m m

W W k E

Certification testing failure nk 4.5 ermrs/KLOC

5 0 - p m n t improvement In quality

' Pmdudivity 780 LOC/PM

1.1 KLOC (FOXBASE)

IBM System Software
First increment 0.6 KLOC (C)

IBM SWem Pmdud

Certifiation testing failure nte: 0.0 errors/KLOC (no
errors round)
First compilation: no errors found

Certiflation W i n g failure nte: 0.0 errors/KLOC (no
errors found)
Tertini failure nte: 1.6 errors/KLOC

University of Tennessee: Cleanmm tool
I2 KLOC (Ada)

~~

1991

Certifiatlon testing failure rate: 3.0 errors/KLOC

Produdlvlty 486 LOC/PM "re
Englneerlng
Cleanmom IBM Lanruare Product Testin& failure rite: 1.1 errors/KLOC

Three ineremenIs, total 107 KLOC (mixed Ianguager)

.. . .

1991

~ ~~ ~~ ~ ~

Certifiation testing failure rate: 0.9 ermrs/KLOC

Certiflation testing failure rite: 5.1 ermn/KLOC

Sortwan 3.5 KLOC (c)
Englneerlng
Cleanmom IBM Mnter Appliation
sonware Fin(Increment 6.7 KLOC (Cl

I - - - I sdhvlm I First in&m&t 11.9 KLOC (PL/X) I

1992

Englnacrlng I I
I 9 9 1 I Partid Cleanmom I IBM imam Comwnent I Fint compilation: 5 syntax errors

. .
Engineering

Puiial Cleanmom
Sonware 17.8 KLOC (TIRS)

1BM Knowledge Bued System Application Testins Failure Rate: 3.5 errors/KLOC

1991

1993

1993

1993

. .
Englneerlng

C l e m m m
Sollwue 170 KLOC (FORTRAN)
Enuneering
Cleanman IBM Device Controller Certiflation testing Failure Rate: 1.8 errors/KLOC
S O m n n
Engineering

sort"
Enuneering
Partial Cleanmom IBM LAN Software Testing Fdlure Rate: 0.8 erron/KLOC
soft"
Endneering

NASA Satellite Control Projear 18nd 3 Testing Failure Rate: 4.2 errors/KLOC

Plrst inaemant 39.9 KLOC (C)

Partial Cleanmom IBM Database Tnnsactlon Processor Testing FIilUn Rate: 1.8 er"/KLOC
No d d p erron, all simple fixes Fint increment 8.5 KLOC (JOVIAL)

Fint increment 4.8 KLOC (C)

NASA Satellite Control Project 1. The Coarse/Fine
Attitude Determination System (CFADS) of the
NASA Attitude Ground Support System (AGSS)
was the first Cleanroom project carried out by the
Software Engineering Laboratory (SEL) of the
NASA Goddard Space Flight Center [SI. The
system, comprised of 40 KLOC of FORTRAN,
exhibited a certification failure rate of 4.5 errors per
KLOC. Productivity was 780 LOC per person-
month, an 80% improvement over previous SEL

averages. Some 60% of the programs compiled cor-
rectly on the fust attempt.

Martin Marietta Automated Documentation System.
A four-person Cleanroom team developed the proto-
type of the Automated Production Control Doc-
umentation System, a relational data base
application of 1820 lines programmed in FOXBASE.
No compilation errors were found, and no failures
were encountered in statistical testing and quality
certification. The software was certified at target

4

levels of reliability and confidence. Team members
attributed error-free compilation and failure-free
testing to the rigor of the Cleanroom methodology
[lo].

IBM System Software. A four-person Cleanroom
team developed the first increment of a system soft-
ware product in C. The increment of 0.6 KLOC
compiled with no errors, and underwent certification
through 130 statistical tests with no errors found.
Subsequent use in another environment resulted in
one specification change.

IBM System Product. A Cleanroom organization of
50 people developed a complex system software
product. The system, written in PL/I, C, REXX,
and TIRS, was developed in three increments
totaling 107 KLOC, with an average of 2.6
errors/KLOC found in testing [111. Causal analysis
of errors in the fust increment revealed that five of
its eight components experienced no errors whatso-
ever in testing. The project reported development
team productivity of 486 LOC per person-month.

IBM Language Product. A seven-person Cleanroom
team developed an extension to a language product.
The first increment of 21.9 KLOC was up and
cycling in less than half the time normally required,
and exhibited a certification error rate of 2.1
errors/KLOC in testing.

IBM Image Product Component. A 3.5 KLOC
image product component was developed to com-
press and decompress data from a Joint Photo-
graphic Expert Group (JPEG) data stream. The
component exhibited three errors in testing, all
simple mistakes. No additional errors have been
found in subsequent use.

IBM Printer Application. An eleven-member team
developed the first increment of a graphics layout
editor in C under OS/2 Presentation Manager. The
editor operates in a complex environment of vendor-
developed code that exports more than 1000 func-
tions, and uses many of the 800 functions of OS/2
PM. The first increment of 6.7 KLOC exhibited a
rate of 5.1 errors/KLOC in testing [12]. All but 1.9
errors/KLOC were attributed to the vendor code
interface and PM and C misunderstandings.

IBM Knowledge Based System Application. A five-
person team developed a prototype knowledge-based
system for the FAA Air Traffic Control System.
The team reported a total of 63 errors for the 17.8
KLOC application, for a rate of 3.5 errors/KLOC.
The fact that Cleanroom errors tend to be simple
mistakes was borne out by project experience; only
two of the 63 errors were classified as severe, and
only five required design changes. The team devel-
oped a special design language for knowledge-based
applications, together with proof rules for correctness
verification.

NASA Satellite Control Projects 2 and 3. A 20
KLOC attitude determination subsystem of the
Solar, Anomalous, and Magnetospheric Particle
Explorer satellite flight dynamics system was the
second Cleanroom project carried out by the Soft-
ware Engineering Laboratory of the NASA Goddard
Space Flight Center. The third project was a 150
KLOC flight dynamics system for the ISTP
Wind/Polar satellite. These projects reported a com-
bined error rate of 4.2 errors/KLOC in testing [13].

IBM Device Controller. A five-person team devel-
oped two increments of device controller design and
microcode in 40 KLOC of C, including 30.5 KLOC
of function deftnitions. Box structure specification
of chip set semantics revealed a number of hardware
errors prior to any execution. The multiple
processor, bus architecture device processes multiple
real-time input and output data streams. The
project reported a failure rate of 1.8 errors/KLOC in
testing.

IBM Database Transaction Processor. A five-person
team developed the first increment of a host-based
database transaction processor in 8.5 KLOC of
JOVIAL. Rigorous use of correctness verification
resulted in a failure rate of 1.8 errors/KLOC in
testing, with no design errors encountered. The
team reported that correctness verification reviews
were far more effective in detecting errors than were
traditional inspections.

IBM LAN Software. A four-person team developed
the first increment of a LAN-based object server in
4.8 KLOC of C, resulting in a failure rate of 0.8
errors/KLOC in testing. The team utilized a popular
case tool for recording specifications and designs.

5

Cleanroom management by Incremental
development

Management planning and control in Cleanroom
is based on developing and certifying a pipeline of
software increments that accumulate to the final
product. The increments are developed and certified
by small, independent teams, with teams of teams
for large projects. Determining the number and
functional content of increments is an important task
driven by requirements, schedule, and resources.
Functional content should be defined such that
increments accumulate to the h a l product for con-
tinual integration, execute in the system environment
for statistical usage testing, and represent end-to-end
user function for quality certification.

An incremental development of a miniature inter-
active application shown in Figure 1, together with
corresponding development and certification pipe-
lines. Each increment is handed off from develop-
ment to certification pipelines in turn, and results in
a new quality measurement in MTTF. Early incre-
ments that implement system architecture receive
more cumulative testing than later increments that
implement localized functions. In this way, major
architectural and design decisions are validated prior
to their elaboration at lower levels.

The time required for design and verification of
increments varies with their size and complexity, and
careful planning and allocation of resources is
required to deliver successive increments to certif-
ication on schedule. Long-lead-time increments may
require parallel development.

Figure 2 illustrates the Cleanroom life cycle of
incremental development and certification. The
functional specification is created by the develop-
ment team, or by a separate specification team for
large projects, and the usage specification is created
by the certification team. Based on these specifica-
tions, a joint planning process defines the initial
incremental development and certification plan for
the product. The development team then carries out
a design and verification cycle for each increment,
based on the functional specification, with corre-
sponding statistical test case preparation by the cer-
tification team based on the usage specification.
Completed increments are periodically delivered to
certification for statistical testing and computation of
MTTF estimates and other statistical measures.
Errors are returned to the development team for cor-
rection. If the quality is low, improvements in the
development process are initiated. As with any
process, a good deal of iteration and feedback is

i n s t a l 1 a t i on.
sign an.
s ign o f f

stubbed P M I l navigat ion.

primary functions.

f u n c t i on5

pans1

I

Devel a p u n t l
V e r i f l c a t l o n
Pi pel i ne

Stat i s t i cai
Test ing1
C e r t i f i c a t i o n
Pi Del i n e

secondary
l n c r 4 functions h

WTF l l l l MTTF RIF WIF

I 1.2 1.2.3 System

Figure 1 . A Miniature Incremental Development

always present to accommodate problems and sol-
utions.

The Cleanroom incremental development life
cycle is intended to be "quick and clean," not "quick
and dirty" [14]. The idea is to quickly develop the
right product with high quality for the user, then go
on to the next version to incorporate new require-
ments arising from user experience.

Experienced Cleanroom teams with sufficient
knowledge of subject matter and processing environ-
ment can achieve substantially reduced product
development cycles. The precision of Cleanroom
development eliminates rework and results in dra-
matically reduced time for certification testing com-
pared to traditional methods. And Cleanroom teams
are not hostage to error correction following product
release.

Cleanroom affords a new level of manageability
and control in adapting to changing requirements.
Because formally engineered software is well-
documented and under good intellectual control
throughout development, the impact of new require-
ments can be accurately assessed, and changes can be
planned and accommodated in a systematic manner.

8

Curtmor Requlrmnnt8

0

1
0 b w l o p u n t

Plnnni nq

Tnmt C o r
Unnratlon

YTTF Estimates

Figure 2. The Cleanroom Life Cycle

Incremental development provides a framework for
replanning schedules, resources, and functional
content, and permits changes to be incorporated and
packaged in a stepwise fashion.

Cleanroom software specification
Cleanroom development begins with a specifica-

tion of required system behavior and architecture.
The object-based trchnology of box structures is an
effective specification technique for Cleanroom
development [IS, 161. Box structures provide a
stepwise refinement and verification process in black
box, state box, and clear box forms for defining
required system behavior and deriving and con-

necting objects comprising a system architecture [17,
181.

Without a rigorous specification technology, there
was little incentive in the past to devote much effort
to the specification process. Specifications were fre-
quently written in natural language, with inevitable
ambiguities and omissions, and often regarded as
throwaway stepping stones to the code. Box struc-
tures, however, provide an economic incentive for
precise specification. Initial box structure specifica-
tions often reveal gaps and misunderstandings in user
requirements that would ordinarily be discovered
later in development at high cost and risk to the
project.

There are two engineering problems associated
with system specification, namely, defining the right
function for users, and defining the right structure for
the specification itself. Box structures address the
frrst problem by precisely defining current under-
standings of required function at each stage of devel-
opment for informed review and modification.

The second problem deals with scale-up in
complex specifications, namely, how to organize
myriad details of behavior and processing into
coherent abstractions for human understanding. Box
structures incorporate the crucial mathematical prop-
erty of referential transparency, such that the infor-
mation content of an abstraction, say a black box, is
sufficient to definc its refmement to state box and
clear box forms without reference to other specifica-
tion parts. This property permits specifications of
large systems to be hierarchically organized, with no
loss of precision at high levels or of details at low
levels.

Three fundamental principles underlie the box
structure design process [171:

1. All data to be defined and retained in a design
are encapsulated in boxes (objects, data
abstractions).

2. All processing is defined by sequential and
concurrent uses of boxes.

3. Each use of a box in a system occupies a dis-
tinct place in the usage hierarchy of the system.

Each box can be defined in the three forms of
black, state, and clear box, with identical external
behavior but increasing internal detail. These forms
isolate and focus on successive creative definitions of
external behavior, retained data, and processing,
respectively, as follows.

7

The black box of an object is a precise specifica-
tion of extemal, user-visible behavior in all possible
circumstances of use. The object may be an entire
system or system part of any size. The user may be
a person or another object. A black box accepts a
stimulus (S) from a user and produces a response
(R) before the next stimulus is processed. Each
response of a black box is determined by its current
stimulus history (SH), with black box transition
function

(S, SH + R).

Any software system or system part exhibits black
box behavior in that its next response is determined
by the history of stimuli it has received. In simple
illustration, imagine a hand calculator and two stim-
ulus histories

Clear7 1 3 and Clear7 1 3 +

Given a next stimulus of 6, the two histories produce
a responses of

7136 and 6

respectively. That is, a given stimulus will produce
dif€erent responses based on history of use, not just
on current stimulus.

The objective of a black box specification is to
define required behavior in all possible circumstances
of use, that is, the responses produced for any pos-
sible stimulus and stimulus history. Such specifica-
tions include erroneous and unexpected stimuli, as
well as correct usage scenarios. By defining behavior
solely in terms of stimulus histories, black box spec-
ifications do not depend on, or prematurely define,
design internals.

Black box specifications are often recorded in
tabular form; in each row, the stimulus and condi-
tion on stimulus history are sufficient to define the
required response. Scale up to large specifications is
achieved by idenwing classes of behavior for
nesting tables, and through use of specification func-
tions [191 to encapsulate conditions on stimulus his-
tories.

The state box of an object is derived from its
black box by identifying those elements of stimulus

history that must be retained as state data between
transitions to achieve required black box behavior.
The transition function of a state box is

where OS and NS represent old state and new state,
respectively. While the external behavior of a state
box is identical to its corresponding black box, the
stimulus history is replaced by reference to old state
and generation of new state as required by each tran-
sition.

State boxes correspond closely to the traditional
view of objects as encapsulations of state data and
services, or methods, on that data. In this view,
stimuli and responses are inputs and outputs, respec-
tively, of specific service invocations.

The clear box of an object is derived from its state
box by defining a procedure to carry out the state
box transition function. The transition function of a
clear box is thus

(S, OS) -, (R, NS) by procedure.

A clear box is simply a program that implements
the corresponding state box. Clear box forms
include sequence, alternation, iteration, and concur-
rent structures [lS]. A clear box may invoke black
boxes at the next level for independent refmement.
That is, the process is recursive, with each clear box
possibly introducing opportunities for d e f ~ t i o n of
new, or extensions to existing, objects in black box,
state box, and clear box forms.

Through this stepwise refinement process, box
structure specifications evolve as usage hierarchies of
objects wherein the services of a given object may be
used and reused in many places at many levels as
required. Clear boxes play a crucial role in the hier-
archy by ensuring the harmonious cooperation of
objects at the next level of refmement. Appropriate
objects and their clear box connections are derived
out of immediate processing needs at each stage of
refmement, not invented a priori with connections
left to later invention.

Box structures bring correctness verification to
object architectures. State boxes can be verified with
respect to their black boxes, and clear boxes verified
with respect to their state boxes. [15].

8

Cleanroom software design and verification
Design and verification of clear box procedures is

based on functional and algebraic properties of their
constituent control structures. The control struc-
tures of structured programming used in clear box
design, namely, sequence, ifthenelse, whiledo, etc.,
are single-entry, single-exit structures with no side
effects in control flow possible. In execution, a
control structure simply transforms data from an
input state to an output state. This transformation,
known as a program function, corresponds to a
mathematical function, that is, it defines a mapping
from a domain to a range by a particular rule.
Program functions can be derived from control
structures. For example, for integers x, y, and z, the
program function of the sequence,

DO
z := abs(y)
w := max(x, z)

is, in concurrent assignment form,

OD

w, z := max(x, abs(y)), abs(y)

and for integer x > = 0, the program function of the
iteration,

WHILE

DO

OD

is, in English,

X'l

x : = x - 2

set odd x to 1, even x to 0

In stepwise refinement of clear box procedures, an
intended function is defined and then refined into a
control structure and new intended functions for
refmement, as illustrated in the miniature example of
Figure 3. Intended functions are recorded in the
design, delimited by square brackets and attached to
their refinements. Design Simplification is an impor-
tant objective in refinement, to arrive at compact
and straightforward designs for verification. The cor-
rectness of each refinement is determined by deriving
its program function, that is, the function it actually
computes, and comparing it to the intended func-
tion.

A Correctness Theorem [20] defines how to make
the comparison of intended functions and program
functions in terms of correctness conditions to be
verified for each control structure. The correctness

...
[set Y to
ninllaui o f
z and absolute
value o f XI ...

...
[set w to
nininwn o f
z and absolute
value o f X I
DO

[set y t o absolute
Value o f X I

[set Y t o minimm
of 2 and y1

00
...

...
[set w t o
minimum of
I and absolute
Value of XI
DO

Iset y t o absolute
value o f XI
I F r < 0
THEN

ELSE
y := -x

y :* x
= F I

[ret w t o minimum
o f z and y1
I F y c i
THEN

ELSE

F I

Y := y

" := z

00
...

Figure 3. Stepwise Refinement of a Design Fragment
with Intended Functions for Verification

conditions make use of function composition for
sequence, case analysis for alternation, and function
composition and case analysis in a recursive equation

Control
Structures:
___--------

Sequence

If1

g:
h

DO

OD

Ifthenelse

[fl
I F P
THEN

g
ELSE

h
FI

Whiledo

[fl
WHILE p
DO

9
OD

Correctness
Conditions: -_____-----

For all arguments:

Does g followed by h do f?

Whenever p is true
does g do f, and

whenever p i s false
does h do f?

Is termination guaranteed, and
whenever p is true

whenever p i s false
does g followed by f do f, and

does doing nothing do f?

Figure 4. Correctness Theorem Correctness Conditions
in Question Form

9

for iteration. For sequence, one condition must be
checked, for alternation, two conditions, and for iter-
ation, three conditions, as shown in Figure 4. The
conditions are language and subject matter inde-
pendent.

The nested and sequenced control structures of a
clear box define a natural decomposition hierarchy
that enumerates the independent subproofs required,
one for each control structure. An Axiom of
Replacement permits algebraic substitution of
intended functions and their control structures in the
hierarchy of subproofs. This substitution permits
proof arguments to be localized to the control struc-
ture at hand, and, in fact, the proofs for each control
structure can be carried out in any order. A mini-
ature program and its required subproofs are shown
in Figure 5.

In essence, clear boxes are composed of a frnite
number of control structures, each of which is veri-
fied by checking a finite number of correctness con-
ditions. Even though all but the most trivial
programs exhibit an essentially infinite number of
execution paths, their verification can be carried out
in a frnite number of steps. For example, the clear
box of Figure 6 requires verification of exactly 15
correctness conditions.

The value to software quality of the reduction of
verification to a frnite process cannot be overempha-
sued. It permits Cleanroom development teams to
verify every line of design and code through mental
proofs of correctness in team reviews. Written proofs
are also possible for extra confidence, for example, in
verification of life- or mission-critical software.

In team reviews, every correctness condition of
every control structure is verified in turn. Every
team member must agree that each condition is
correct. An error is possible only if every team
member incorrectly verifies a particular correctness
condition. The requirement for unanimous agree-
ment based on individual verifications results in soft-
ware at or near zero defects prior to first execution.

Function-theoretic verification scales up to large
systems. Every structured system, no matter how
large, has top level programs composed of familiar
sequence, alternation, and iteration structures, which
typically invoke large-scale subsystems at the next
level involving thousands of lines of code (each of
which has its own top level programs). The correct-
ness conditions for these structures are scale-free,
that is, they are invariant with respect to the size and
complexity of the operations involved. Verification

[fll
DO

UHILE
Pl

DO [f3]
g3
[f41
IF

P2
THEN [f51

94
95

ELSE [f61
96
97

F I
98

OD
OD

Subproof s :

fl = [D O gl;gZ;[f2] OD] ?

f2 = [UHILE pl DO [f3] OD] ?

f3 = [D O g3;[f4];g8 OD] ?

f4 = [IF p2 THEN [f51 ELSE If61 F I]

f5 - [DO g4;g5 OD] 7

f6 - [DO g6;g7 OD] ?

Figure 5. A Program and its Constituent Subproofs

at high levels may take, and well be worth, more
time, but it does not take more theory.

Correctness verification produces quality results
superior to unit testing and debugging. For each
program part, function-theoretic correctness condi-
tions permit verifcation of all possible effects on
data. Unit testing, however, checks only effects of
particular test paths selected out of many possible
paths. A program or program part may have many
paths to test, but only one function to verify.

In addition, verification is more efficient than unit
testing. Most verification conditions can be checked
in a few seconds in team reviews, but unit tests take
substantial time to prepare, execute, and check.

Cleanroom software quality certification
Techniques and benefits of statistical quality

control in hardware development are well known.
In cases where populations of items are too large to
permit exhaustive testing, statistical sampling and
analysis methods are employed to obtain scientific
assessments of quality.

In simple illustration, the process of statistical
quality control in manufacturing is to 1) sample the
population of items on a production line, 2) measure
the quality of the sample with respect to a design
assumed to be perfect, 3) extrapolate the sample
quality to the population of items and 4) if the
quality is inadequate, identify and correct flaws in
production. In applying statistical quality control to
hardware products, the statistics lie in the variation

10

of physical properties of items in the population.
But in the case of software products, all copies are
identical, bit for bit, so where are the statistics?

It tumi out that software has a statistical property
of great interest to developers and users, namely, its
execution behavior. That is, how long on average
will a software product execute before it fails, say by
abending, producing incorrect output, etc.? Thus,
the process of statistical quality control in software is
to I) sample the essentially infinite population of
possible user executions of a product based on the
frequency of expected usage, 2) measure the quality
of the sample by determining if the executions are
correct, 3) extrapolate the quality of the sample to
the population of possible executions, and 4) if the
quality is inadequate, identify and correct flaws in
the development process, for example, improvements
to inadequate correctness verification.

seq
I

P :- odd_nemhers(P)) I even_nenberr(P) 1
PROC Odd_Before-Even (ALT 0)

DATA
odds : queue o f integer [initializes t O empty 1
evens : queue of integer [initializes to empty 1
x : integer

ATAD

I 0 := empty,

WHILE 0 <> empty
DO

x := end(P)

[x i s odd -) odd5 := Odds 1 1 x

ite
IF odd(x)
THEN

ELSE

f l

end(odds1 := x

end(evens) := x

OD

[P
odds := empty 1

WHILE odds 0 empty
00

:= 0 1 1 odds.

x :- end(odds)] seq
end(0) := x 1

00

.= P) I evens,
WHILE evens <, empty
00

x := end(evens)] seq
end(0) := x 1

OD

CORP

1 '
vdo

3

Wdo
3

WdO l 3
SE0 = sequence
1TE s ifthenelse
WOO = uhileds

Figure 6. A Procedure with 15 Correctness Conditions

This process, known as statistical usage testing
[SI, amounts to testing software the way users intend
to use it. The entire focus of statistical testing is on
external system behavior, not internals of design and
implementation as in conventional coverage testing.
Cleanroom certification teams have deep knowledge
of expected usage, but no knowledge of design inter-
nals.

As noted, the role of a Cleanroom certification
team is not to debug software, but rather to certify
its quality through statistical testing techniques. The
certification may show adequate quality, but if not,
the software will be returned to the development
team for rework.

In practice, Cleanroom quality certification is
carried out in three steps, as follows:

Step 1: Specify usage probability distributions.
Usage probability distributions are models of
intended usage of a software product. They define
all possible usage patterns and scenarios, including
erroneous and unexpected usage, together with their
probabilities of occurrence. Usage probability dis-
tributions represent the virtually infinite population
of possible executions of a software product, together
with their expected frequencies of use.

Distributions are defined by the certification team
based on box structure specifications of system func-
tion, plus information on system usage probabilities
obtained from prospective users, actual usage of
prior versions, etc. Formal grammars permit
compact representations of distributions for analysis
and review.

Step 2 Randomize test cases against usage proba-
bility distributions. Test cases are derived from the
distributions, such that every test represents actual
usage and will effectively rehearse user experience
with the product. Because the test cases are com-
pletely prescribed by the distributions, test case pro-
duction is a mechanical, and automatable, process.

In miniature illustration, Figure 7 depicts a usage
specification and corresponding test case generation
for a program with four user stimuli to Update (U),
Delete (D), Query (Q), and Print (P). A usage dis-
tribution, simplified for illustration, shows projected
probabilities of use of 32, 14, 46, and 8 percent for
the four stimuli, respectively (omitting scenarios of
use, etc., for simplicity). These probabilities are
mapped onto an interval of 0 to 99, dividing it into
four partitions proportional to the probabilities.
Assuming a test case contains six stimuli, each test is

11

Usage Probsbi 1 I t i e s :

Usage
Program P o s s i b i l i t y D i r t r l b u t i o n
S t i u l i D i s t r i b u t i o n I n t e r v a l

U (updata] 32t 8 ~ 31

0 (delete] 141 32 - 45

P (query1 461 46 ~ 91

P (p r i n t 1 81 92 - $9

lest Cas8 Generation:

l e s t lumber Random Nunben Test Case

1 29 11 47 5 2 26 94 U U P P U P

2 62 08 3g 78 82 65 P U D O Q P

3 83 32 50 41 36 17 U D P 0 0 U

4 36 48 86 82 28 77 0 0 P U U P

...

Figure 7. Simplified Usage Probability Distribution and
Statistical Test Case Generation for a Program
with Four User Stimuli

generated by obtaining six two-digit random
numbers, determining the partitions within which
they reside, and appending the corresponding stimuli
(U, D, Q, or P) to the test case. In this way, each
test case is faithful to the distribution and represents
a possible user execution of the system.

Step 3: Execute random test cases, asscss success or
failure, and compute quality measures. Each test case
is executed and its results are verified against system
specifications. Time in execution up to correct com-
pletion or failure is recorded in appropriate units, for
example, CPU time, wall clock time, number of
transactions, etc. In effect, these times, known as
interfail times, represent the quality of the sample of
possible user executions. Interfail times accumulated
in testing are processed by a quality certification
model [6] that computes product Mean Time To
Failure (MTTF) and other measures of quality.
Figure 8 depicts graphs produced by the certification
model. The X and Y axes plot errors fixed and
computed MTTF, respectively. The curve for high-
quality software shows exponential improvement,
such that the MTTF quickly exceeds the total test
time, whereas the curve for low-quality software
shows little MTTF growth.

Because statistical usage testing embeds the soft-
ware development process in a formal statistical
design, MTTF measures provide a scientific basis for
management action, unlike the anecdotal evidence of

M T F

E.tlnrt.

Figure 8. Two Sample MTTF Graphs Produced by the
Cleanroom Certification Model

quality characteristic of coverage testing (if many, or
few, errors are found, is that good or bad?).

In incremental development, a usage probability
distribution can be stratified into subsets that exer-
cise increasing functional content as increments are
added, with the full distribution in effect once the
final increment is in place. In addition, alternate dis-
tributions can be defined to permit independent cer-
tification of infrequently used system functions (with
low probability in primary distributions) that carry
high consequences of fdure, for example, code for
emergency shutdown of a nuclear reactor.

But there is more to the story of statistical usage
testing. Extensive analysis of errors in large-scale
software systems reveals a spread in the failure rates
of errors of some four orders of magnitude [2].
Virulent, high-rate errors can literally occur every few
hours for some user, but low-rate errors may show
up only after decades of use. High-rate errors have a
profound effect on product quality, but they com-
prise only a small fraction of total errors. In fact,
this small fraction (under 3%) is responsible for
nearly two-thirds of the software failures reported

Because statistical usage testing amounts to testing
software the way users will use it, errors tend to be
found in failure-rate order on average, that is, any
remaining virulent, high-rate errors tend to be found
first. As a result, errors left behind, if any, at com-
pletion of testing tend to be low-rate errors that are
infrequently encountered by users.

Traditional coverage testing does not find errors in
failure-rate order, but rather, in random order. On
any given coverage path, an error will either be

c51.

12

found or not. If found, an error may be low rate,
high rate or in between. That is, coverage testing is
not biased to find errors in any particular rate order.
Finding and fixing low-rate errors has little effect on
MTTF and the user perception of quality. But
finding and fixing errors in failure-rate order has dra-
matic effect, with each correction resulting in sub-
stantial improvement in MTTF. In fact, statistical
usage testing is more than 20 times more effective at
extending MTTF than is coverage testing [SI.

Acknowledgements
The author wishes to thank Kim I-Iathaway for

her contributions and assistance in developing this
paper. Suggestions by Michael Deck, Philip
Hausler, Iiarlan Mills, Mark Pleszkoch, and Nan
Spangler were appreciated. Special acknowledge-
ment is due to the members of the Cleanroom teams
whose quality results are reported in this paper, and
who are setting new standards of professional excel-
lence in software development.

References

1 .

2.

3.

4.

5.

6.

7.

Mills, H. D., "Certifying the Correctness of Software,"
Proc. 25th Hawaii International Conference on
System Sciences, IEEE Computer Society Press,
January, 1992, pp. 373-381.

Adams, E. N., "Optimizing Preventive Service of Solt-
ware Products," IBM Journal of Research and Devel-
opment, January, 1984.

Mills, H. D., M. Dyer, and R. C. Linger, "Cleanroom
Software Engineering," IEEE Software, September,

Linger, R. C. and R. A. Spangler, "The IBM
Cleanroom Software Engineering Technology
Transfer Program," Proc. SEI Software Engineering
Education Conference, IEEE Computer Society Press,
San Diego, CA, October 5-7, 1992.

Cobb, R. 1-1. and H. D. Mills, "Engineering Software
Under Statistical Quality Control," IEEE Software,
November, 1990, pp. 44-54.

Curritt, P. A., M. Dyer, and 11. D. Mills, "Certifying
the Reliability of Software," IEEE Trans. on Software
Engineering, Vol. SE-12, No. 1 , January, 1986, pp.

Linger, R. C. and H. D. Mills, "A Case Study in
Cleanroom Software Engineering: The IBM COBOL
Structuring Facility," Proc. 12th International Com-
puter Science a d Applications Conference, I EEE
Computer Society Press, October, 1988.

1987, pp. 19-25.

3-11.

8.

9.

10.

1 1 .

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A Success Story at Pratt & Whitney: On Track for
the Future with I B M s VS COBOL I I and COBOL
Structuring Facility, publication GK20-2326, IBM
Corporation, White Plains, NY.

Kouchakdjian, A., S. Green, and V. R. Basili, "Eval-
uation of the Cleanroom Methodology in the Soft-
ware Engineering Laboratory." Proc. Fourteenth
Annual Software Engineering Workshop, NASA
Goddard Space Flight Center, Greenbelt, MD,
November 1989.

Trammell, C. J., L. €1. Binder, and C. E. Snyder,
"The Automated Production Control System: A Case
Study in Cleanroom Software Engineering," ACM
Transactions on Sofiware Engineering and Method-
ology, Vol. 1 , No. 1 , January 1992, pp. 81-94.

Hausler, Philip A., "A Recent Cleanroom Success
Story: The Redwing Project," Proc. Seventeenth
Annual Software Engineering Workshop, NASA
Goddard Space Flight Center, Greenbelt, MD,
December 1992.

Deck, M.D., P. Ilausler, and R.C. Linger, "Recent
Experiences with Cleanroom Software Engineering,"
Proc. 1992 IBM Software Development Conference,
Toronto, Canada, 1992

Green, S.E. and Rose Pajerski, "Cleanroom Process
Evolution in the SEL," Proc. Sixteenth Annual Soft-
ware Engineering Workshop, NASA Goddard Space
Flight Center, Greenbelt, MD, December, 1991.

Mills, 11. D., Private communication.

Mills, 13. D., R. C. Linger, and A. R. Hevner, Princi-
ples of Information Systems Analysis and Design,
Academic Press, San Diego, CA, 1986.

Mills, 11. D., R. C. Linger, and A. R. Hevner, "Box
Structured Information Systems," IBM Systems
Journal, Vol. 26, No. 4, 1987, pp. 393-413.

Mills, H. D., "Stepwise Refinement and Verification
in Box-Structured Systems," IEEE Computer, June,
1988.

I-ievner, A. R. and M. D. Mills, "Box Structured
Methods for Systems Development with Objects,"
IBM Systems Journal (to appear).

Pleszkoch, M. G., P. A. Hausler, A. R. Hevner, and
R. C. Linger, "Function-Theoretic Principles of
Program Understanding," Proc. 23rd Hawaii Interna-
tional Conference on System Sciences, IEEE Com-
puter Society Press, January, 1990, pp. 74-81.

Linger, R. C., H. D. Mills, and B. 1. Witt, Structured
Programming: Theory and Practice, Addison-Wesley,
Reading, MS, 1979.

Poore, J. H. and 11. D. Mills, "Bringing Software
Under Statistical Quality Control," Quality Progress,
November 1988.

13

