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Abstract 
Cleanroom software engineering is a theory-based, 

team-oriented process for developing very high quality 
software under statistical quality control. Cleanroom 
combines formal methods of object-based box struc- 
ture specification and design, function- theoretic cor- 
rectness veri/ication, and statistical usage testing for 
quality certification, to produce sofmare that is zero 
defects with high probability. Cleanroom manage- 
ment is based on a l fe  cycle of incremental develop- 
ment of user- function sofmare increments that 
accumulate into the PnaI product. Cleanroom teams 
in IBM and other organizations are achieving remark- 
able quality results in both new system development 
and modifications and extensions to existing systems. 

Keywords. Cleanroom software engineering, formal 
specification, box structures, correctness verification, 
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Zero-defect software 
On first thought, zero-defect software may seem 

an impossible goal. After all, the experience of the 
first human generation in software development has 
reinforced the seeming inevitability of errors and per- 
sistence of human fallibility. Today, however, a new 
reality in software development belies this first gener- 
ation experience [ 11. Although it is, theoretically 
impossible to ever know for certain that a software 
product has zero defects, it is possible to know that 
it has zero defects with high probability. Cleanroom 
software engineering teams are developing software 
that is zero defects with high probability, and doing 
so with high productivity. Such performance 
depends on mathematical foundations in program 
specification, design, correctness verification, and sta- 
tistical quality control, as well as on engineering dis- 
cipline in their application. 

In traditional software development, errors were 
regarded as inevitable. Programmers were urged to 
get software into execution quickly, and techniques 
for error removal were widely encouraged. The 
sooner the software could be written, the sooner 
debugging could begin. Programs were subjected to 
private unit testing and debugging, then integrated 
into components with more debugging, and finally 
into subsystems and systems with still more debug- 
ging. At each step, new interface and design errors 
were found, many the result of debugging in earlier 
steps. Product use by customers was simply another 
step in debugging, to correct errors discovered in the 
field. The most virulent errors were usually the 
result of fixes to other errors in development and 
maintenance [2]. It was not unusual for software 
products to reach a steady-state error population, 
with new errors introduced as fast as old ones were 
fixed. Today, debugging is understood to be the 
most error-prone process in software development, 
leading to "right in the small, wrong in the large" 
programs, and nightmares of integration where all 
parts are complete but do not work together because 
of deep interface and design errors. 

In the Cleanroom process, correctness is built in 
by the development team through formal specifica- 
tion, design, and verification [3]. Team correctness 
verifcation takes the place of unit testing and debug- 
ging, and software enters system testing directly, 
with no execution by the development team. All 
errors are accounted for from first execution on, with 
no private debugging permitted. Experience shows 
that Cleanroom software typically enters system 
testing near zero defects and occasionally at zero 
defects. 

The certification (test) team is not responsible for 
testing in quality, an impossible task, but rather for 
certifying the quality of software with respect to its 
specification. Certification is carried out by statis- 
tical usage testing that produces objective assess- 
ments of product quality. Errors, if any, found in 
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testing are returned to the development team for cor- 
rection. If quality is not acceptable, the software is 
removed from testing and returned to the develop- 
ment team for rework and reverification. 

The process of Cleanroom development and cer- 
tification is carried out incrementally. Integration is 
continuous, and system functionality grows with the 
addition of successive increments. When the final 
increment is complete, the system is complete. 
Because at each stage the harmonious operation of 
future increments at the next level of refinement is 
predefmed by increments already in execution, inter- 
face and design errors are rare. 

The Cleanroom process is being successfully 
applied in IBM and other organizations. The tech- 
nology requires some training and practice, but 
builds on existing skills and software engineering 
practices. It is readily applied to both new system 
development and re-engineering and extension of 
existing systems. The IBM Cleanroom Software 
Technology Center (CSTC) [4] provides technology 
transfer support to Cleanroom teams through educa- 
tion and consultation. 

Cleanroom quality results 
Table 1 summarizes quality results from 

Cleanroom projects. Earlier results are reported in 
[SI. The projects report a ”certification testing 
failure rate;” for example, the rate for the IBM Flight 
Control project was 2.3 errors per KLOC, and for 
the IBM COBOL Structuring Facility project, 3.4 
errors per KLOC. These numbers represent all 
errors found in all testing, measured from first-ever 
execution through test completion. That is, the rates 
represent residual errors present in the software fol- 
lowing correctness verification by development 
teams. 

The projects in Table 1 produced over a half a 
million lines of Cleanroom code with a range of 0 to 
5.1 errors per KLOC for an average of 3.3 errors per 
KLOC found in all testing, a remarkable quality 
achievement indeed. 

Traditionally developed software does not 
undergo correctness verification. It goes from devel- 
opment to unit testing and debugging, then more 
debugging in function and system testing. At entry 
to unit testing, traditional software typically exhibits 
30-50 errors/KLOC. Traditional projects often 
report errors beginning with function testing (or 
later), omitting errors found in private unit testing. 

A traditional project experiencing, say, five 
errors/KLOC in function testing may have encount- 
ered 25 or more errors per KLOC when measured 
from first execution in unit testing. Quality compar- 
isons between traditional and Cleanroom software 
are meaningful when measured from first execution. 

Experience has shown that there is a qualitative 
difference in the complexity of errors found in 
Cleanroom and traditional code. Errors left behind 
by Cleanroom correctness verification, if any, tend to 
be simple mistakes easily found and fixed by statis- 
tical testing, not decp design or interface errars. 
Cleanroom errors are not only infrequent, but 
usually simple as well. 

Highhghts of Cleanroom projects reported in 
Table 1 are described below: 

IBM Flight Control. A III-I60 helicopter avionics 
component was developed on schedule in three 
increments comprising 33 KLOC of JOVIAL [SI. 
A total of 79 corrections were required during statis- 
tical certification for an error rate of 2.3 errors per 
KLOC for verified software with no prior execution 
or debugging. 

IBM COBOL Structuring Facility (COBOL/SI;). 
COBOL/SF, IBM’s first commercial Cleanroom 
product, was developed by a six-person team. The 
product automatically transforms unstructured 
COBOL programs into functionally equivalent struc- 
tured form for improved understandability and main- 
tenance. It makes use of proprietary graph-theoretic 
algorithms, and exhibits a level of complexity on the 
order of a COBOL compiler. 

The current version of the 85 KLOC PL/I 
product required 52 KLOC of new code and 179 
corrections during statistical certification of five 
increments, for a rate of 3.4 errors per KLOC [7]. 
Several major components completed certification 
with no errors found. In an early support program 
at a major aerospace corporation, six months of 
intensive use resulted in no functional equivalence 
errors ever found [SI. Productivity, including all 
specification, design, verification, certification, user 
publications, and management, averaged 740 LOC 
per person-month. Challenging schedules defined for 
competitive reasons were all met. A major benefit of 
Cleanroom products is dramatically reduced mainte- 
nance costs. COBOL/SF has required less than one 
person-year per year for all maintenance and cus- 
tomer support. 
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I Table 1. Cleanroom Quality Results 

1987 Clemroom IBM Fll&ht Control: Helieopter Avionia System Component Certiflation testing failure nte: 1.3 erron/KLOC 
Sortmn 33 KLOC (Jmiai) 
Engineering Error-fix rsduced Sx 

Clelnmom IBM COBOL Strudurlng Faality: Pmdud for automatially IBM's flnt Clnnmom pmdud 
CertifiaUon testing failure nk 3.4 errors/KLOC 

Pmdudivity 740 LOC/PM 
Deolmment failures 0.1 erron/KLOC. all simole flxes 

restructuring COBOL programs 
BS KLOC (PL/I) 

1991 

1991 

NASA Satellite Control Project 1 
40 KLOC (FORTRAN) 

Engineering 

Sortware 
Engineering 

Cleanroom 

Engineering 

Partial C l e m m m  

W W k E  

Certification testing failure nk 4.5 ermrs/KLOC 

5 0 - p m n t  improvement In quality 

' Pmdudivity 780 LOC/PM 

1.1 KLOC (FOXBASE) 

IBM System Software 
First increment 0.6 KLOC (C) 

IBM SWem Pmdud 

Certifiation testing failure nte: 0.0 errors/KLOC (no 
errors round) 
First compilation: no errors found 

Certiflation W i n g  failure nte: 0.0 errors/KLOC (no 
errors found) 
Tertini failure nte: 1.6 errors/KLOC 

University of Tennessee: Cleanmm tool 
I2 KLOC (Ada) 

~~ 

1991 

Certifiatlon testing failure rate: 3.0 errors/KLOC 

Produdlvlty 486 LOC/PM "re 
Englneerlng 
Cleanmom IBM Lanruare Product Testin& failure rite: 1.1 errors/KLOC 

Three ineremenIs, total 107 KLOC (mixed Ianguager) 

.. . . 

1991 

~ ~~ ~~ ~ ~ 

Certifiation testing failure rate: 0.9 ermrs/KLOC 

Certiflation testing failure rite: 5.1 ermn/KLOC 

Sortwan 3.5 KLOC ( c )  
Englneerlng 
Cleanmom IBM Mnter Appliation 
sonware Fin( Increment 6.7 KLOC (Cl 

I - - -  I sdhvlm I First in&m&t 11.9 KLOC (PL/X) I 

1992 

Englnacrlng I I 
I 9 9 1  I Partid Cleanmom I IBM imam Comwnent I Fint compilation: 5 syntax errors 

. .  
Engineering 

Puiial Cleanmom 
Sonware 17.8 KLOC (TIRS) 

1BM Knowledge Bued System Application Testins Failure Rate: 3.5 errors/KLOC 

1991 

1993 

1993 

1993 

. .  
Englneerlng 

C l e m m m  
Sollwue 170 KLOC (FORTRAN) 
Enuneering 
Cleanman IBM Device Controller Certiflation testing Failure Rate: 1.8 errors/KLOC 
S O m n n  
Engineering 

sort" 
Enuneering 
Partial Cleanmom IBM LAN Software Testing Fdlure Rate: 0.8 erron/KLOC 
soft" 
Endneering 

NASA Satellite Control Projear 18nd 3 Testing Failure Rate: 4.2 errors/KLOC 

Plrst inaemant 39.9 KLOC (C) 

Partial Cleanmom IBM Database Tnnsactlon Processor Testing FIilUn Rate: 1.8 er"/KLOC 
No d d p  erron, all simple fixes Fint increment 8.5 KLOC (JOVIAL) 

Fint increment 4.8 KLOC (C) 

NASA Satellite Control Project 1. The Coarse/Fine 
Attitude Determination System (CFADS) of the 
NASA Attitude Ground Support System (AGSS) 
was the first Cleanroom project carried out by the 
Software Engineering Laboratory (SEL) of the 
NASA Goddard Space Flight Center [SI. The 
system, comprised of 40 KLOC of FORTRAN, 
exhibited a certification failure rate of 4.5 errors per 
KLOC. Productivity was 780 LOC per person- 
month, an 80% improvement over previous SEL 

averages. Some 60% of the programs compiled cor- 
rectly on the fust attempt. 

Martin Marietta Automated Documentation System. 
A four-person Cleanroom team developed the proto- 
type of the Automated Production Control Doc- 
umentation System, a relational data base 
application of 1820 lines programmed in FOXBASE. 
No compilation errors were found, and no failures 
were encountered in statistical testing and quality 
certification. The software was certified at target 
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levels of reliability and confidence. Team members 
attributed error-free compilation and failure-free 
testing to the rigor of the Cleanroom methodology 
[lo]. 

IBM System Software. A four-person Cleanroom 
team developed the first increment of a system soft- 
ware product in C. The increment of 0.6 KLOC 
compiled with no errors, and underwent certification 
through 130 statistical tests with no errors found. 
Subsequent use in another environment resulted in 
one specification change. 

IBM System Product. A Cleanroom organization of 
50 people developed a complex system software 
product. The system, written in PL/I, C, REXX, 
and TIRS, was developed in three increments 
totaling 107 KLOC, with an average of 2.6 
errors/KLOC found in testing [ 111. Causal analysis 
of errors in the fust increment revealed that five of 
its eight components experienced no errors whatso- 
ever in testing. The project reported development 
team productivity of 486 LOC per person-month. 

IBM Language Product. A seven-person Cleanroom 
team developed an extension to a language product. 
The first increment of 21.9 KLOC was up and 
cycling in less than half the time normally required, 
and exhibited a certification error rate of 2.1 
errors/KLOC in testing. 

IBM Image Product Component. A 3.5 KLOC 
image product component was developed to com- 
press and decompress data from a Joint Photo- 
graphic Expert Group (JPEG) data stream. The 
component exhibited three errors in testing, all 
simple mistakes. No additional errors have been 
found in subsequent use. 

IBM Printer Application. An eleven-member team 
developed the first increment of a graphics layout 
editor in C under OS/2 Presentation Manager. The 
editor operates in a complex environment of vendor- 
developed code that exports more than 1000 func- 
tions, and uses many of the 800 functions of OS/2 
PM. The first increment of 6.7 KLOC exhibited a 
rate of 5.1 errors/KLOC in testing [12]. All but 1.9 
errors/KLOC were attributed to the vendor code 
interface and PM and C misunderstandings. 

IBM Knowledge Based System Application. A five- 
person team developed a prototype knowledge-based 
system for the FAA Air Traffic Control System. 
The team reported a total of 63 errors for the 17.8 
KLOC application, for a rate of 3.5 errors/KLOC. 
The fact that Cleanroom errors tend to be simple 
mistakes was borne out by project experience; only 
two of the 63 errors were classified as severe, and 
only five required design changes. The team devel- 
oped a special design language for knowledge-based 
applications, together with proof rules for correctness 
verification. 

NASA Satellite Control Projects 2 and 3. A 20 
KLOC attitude determination subsystem of the 
Solar, Anomalous, and Magnetospheric Particle 
Explorer satellite flight dynamics system was the 
second Cleanroom project carried out by the Soft- 
ware Engineering Laboratory of the NASA Goddard 
Space Flight Center. The third project was a 150 
KLOC flight dynamics system for the ISTP 
Wind/Polar satellite. These projects reported a com- 
bined error rate of 4.2 errors/KLOC in testing [13]. 

IBM Device Controller. A five-person team devel- 
oped two increments of device controller design and 
microcode in 40 KLOC of C, including 30.5 KLOC 
of function deftnitions. Box structure specification 
of chip set semantics revealed a number of hardware 
errors prior to any execution. The multiple 
processor, bus architecture device processes multiple 
real-time input and output data streams. The 
project reported a failure rate of 1.8 errors/KLOC in 
testing. 

IBM Database Transaction Processor. A five-person 
team developed the first increment of a host-based 
database transaction processor in 8.5 KLOC of 
JOVIAL. Rigorous use of correctness verification 
resulted in a failure rate of 1.8 errors/KLOC in 
testing, with no design errors encountered. The 
team reported that correctness verification reviews 
were far more effective in detecting errors than were 
traditional inspections. 

IBM LAN Software. A four-person team developed 
the first increment of a LAN-based object server in 
4.8 KLOC of C, resulting in a failure rate of 0.8 
errors/KLOC in testing. The team utilized a popular 
case tool for recording specifications and designs. 
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Cleanroom management by Incremental 
development 

Management planning and control in Cleanroom 
is based on developing and certifying a pipeline of 
software increments that accumulate to the final 
product. The increments are developed and certified 
by small, independent teams, with teams of teams 
for large projects. Determining the number and 
functional content of increments is an important task 
driven by requirements, schedule, and resources. 
Functional content should be defined such that 
increments accumulate to the h a l  product for con- 
tinual integration, execute in the system environment 
for statistical usage testing, and represent end-to-end 
user function for quality certification. 

An incremental development of a miniature inter- 
active application shown in Figure 1, together with 
corresponding development and certification pipe- 
lines. Each increment is handed off from develop- 
ment to certification pipelines in turn, and results in 
a new quality measurement in MTTF. Early incre- 
ments that implement system architecture receive 
more cumulative testing than later increments that 
implement localized functions. In this way, major 
architectural and design decisions are validated prior 
to their elaboration at lower levels. 

The time required for design and verification of 
increments varies with their size and complexity, and 
careful planning and allocation of resources is 
required to deliver successive increments to certif- 
ication on schedule. Long-lead-time increments may 
require parallel development. 

Figure 2 illustrates the Cleanroom life cycle of 
incremental development and certification. The 
functional specification is created by the develop- 
ment team, or by a separate specification team for 
large projects, and the usage specification is created 
by the certification team. Based on these specifica- 
tions, a joint planning process defines the initial 
incremental development and certification plan for 
the product. The development team then carries out 
a design and verification cycle for each increment, 
based on the functional specification, with corre- 
sponding statistical test case preparation by the cer- 
tification team based on the usage specification. 
Completed increments are periodically delivered to 
certification for statistical testing and computation of 
MTTF estimates and other statistical measures. 
Errors are returned to the development team for cor- 
rection. If the quality is low, improvements in the 
development process are initiated. As with any 
process, a good deal of iteration and feedback is 

i n s t a l  1 a t  i on. 
sign an. 
s ign o f f  

stubbed P M I l  navigat ion.  

primary functions. 

f u n c t i  on5 

pans1 

I 

Devel a p u n t l  
V e r i f l c a t l o n  
Pi pel  i ne 

Stat  i s t i  cai  
Test ing1 
C e r t i f i c a t i o n  
Pi  Del i n e  

secondary 
l n c r  4 functions h 

WTF l l l l  MTTF RIF WIF 

I 1.2 1.2.3 System 

Figure 1 .  A Miniature Incremental Development 

always present to accommodate problems and sol- 
utions. 

The Cleanroom incremental development life 
cycle is intended to be "quick and clean," not "quick 
and dirty" [14]. The idea is to quickly develop the 
right product with high quality for the user, then go 
on to the next version to incorporate new require- 
ments arising from user experience. 

Experienced Cleanroom teams with sufficient 
knowledge of subject matter and processing environ- 
ment can achieve substantially reduced product 
development cycles. The precision of Cleanroom 
development eliminates rework and results in dra- 
matically reduced time for certification testing com- 
pared to traditional methods. And Cleanroom teams 
are not hostage to error correction following product 
release. 

Cleanroom affords a new level of manageability 
and control in adapting to changing requirements. 
Because formally engineered software is well- 
documented and under good intellectual control 
throughout development, the impact of new require- 
ments can be accurately assessed, and changes can be 
planned and accommodated in a systematic manner. 
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Figure 2. The Cleanroom Life Cycle 

Incremental development provides a framework for 
replanning schedules, resources, and functional 
content, and permits changes to be incorporated and 
packaged in a stepwise fashion. 

Cleanroom software specification 
Cleanroom development begins with a specifica- 

tion of required system behavior and architecture. 
The object-based trchnology of box structures is an 
effective specification technique for Cleanroom 
development [IS, 161. Box structures provide a 
stepwise refinement and verification process in black 
box, state box, and clear box forms for defining 
required system behavior and deriving and con- 

necting objects comprising a system architecture [ 17, 
181. 

Without a rigorous specification technology, there 
was little incentive in the past to devote much effort 
to the specification process. Specifications were fre- 
quently written in natural language, with inevitable 
ambiguities and omissions, and often regarded as 
throwaway stepping stones to the code. Box struc- 
tures, however, provide an economic incentive for 
precise specification. Initial box structure specifica- 
tions often reveal gaps and misunderstandings in user 
requirements that would ordinarily be discovered 
later in development at high cost and risk to the 
project. 

There are two engineering problems associated 
with system specification, namely, defining the right 
function for users, and defining the right structure for 
the specification itself. Box structures address the 
frrst problem by precisely defining current under- 
standings of required function at each stage of devel- 
opment for informed review and modification. 

The second problem deals with scale-up in 
complex specifications, namely, how to organize 
myriad details of behavior and processing into 
coherent abstractions for human understanding. Box 
structures incorporate the crucial mathematical prop- 
erty of referential transparency, such that the infor- 
mation content of an abstraction, say a black box, is 
sufficient to definc its refmement to state box and 
clear box forms without reference to other specifica- 
tion parts. This property permits specifications of 
large systems to be hierarchically organized, with no 
loss of precision at high levels or of details at low 
levels. 

Three fundamental principles underlie the box 
structure design process [ 171: 

1. All data to be defined and retained in a design 
are encapsulated in boxes (objects, data 
abstractions). 

2. All processing is defined by sequential and 
concurrent uses of boxes. 

3. Each use of a box in a system occupies a dis- 
tinct place in the usage hierarchy of the system. 

Each box can be defined in the three forms of 
black, state, and clear box, with identical external 
behavior but increasing internal detail. These forms 
isolate and focus on successive creative definitions of 
external behavior, retained data, and processing, 
respectively, as follows. 
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The black box of an object is a precise specifica- 
tion of extemal, user-visible behavior in all possible 
circumstances of use. The object may be an entire 
system or system part of any size. The user may be 
a person or another object. A black box accepts a 
stimulus (S) from a user and produces a response 
(R) before the next stimulus is processed. Each 
response of a black box is determined by its current 
stimulus history (SH), with black box transition 
function 

(S, SH + R). 

Any software system or system part exhibits black 
box behavior in that its next response is determined 
by the history of stimuli it has received. In simple 
illustration, imagine a hand calculator and two stim- 
ulus histories 

Clear7 1 3  and Clear7 1 3  + 

Given a next stimulus of 6, the two histories produce 
a responses of 

7136 and 6 

respectively. That is, a given stimulus will produce 
dif€erent responses based on history of use, not just 
on current stimulus. 

The objective of a black box specification is to 
define required behavior in all possible circumstances 
of use, that is, the responses produced for any pos- 
sible stimulus and stimulus history. Such specifica- 
tions include erroneous and unexpected stimuli, as 
well as correct usage scenarios. By defining behavior 
solely in terms of stimulus histories, black box spec- 
ifications do not depend on, or prematurely define, 
design internals. 

Black box specifications are often recorded in 
tabular form; in each row, the stimulus and condi- 
tion on stimulus history are sufficient to define the 
required response. Scale up to large specifications is 
achieved by idenwing classes of behavior for 
nesting tables, and through use of specification func- 
tions [ 191 to encapsulate conditions on stimulus his- 
tories. 

The state box of an object is derived from its 
black box by identifying those elements of stimulus 

history that must be retained as state data between 
transitions to achieve required black box behavior. 
The transition function of a state box is 

where OS and NS represent old state and new state, 
respectively. While the external behavior of a state 
box is identical to its corresponding black box, the 
stimulus history is replaced by reference to old state 
and generation of new state as required by each tran- 
sition. 

State boxes correspond closely to the traditional 
view of objects as encapsulations of state data and 
services, or methods, on that data. In this view, 
stimuli and responses are inputs and outputs, respec- 
tively, of specific service invocations. 

The clear box of an object is derived from its state 
box by defining a procedure to carry out the state 
box transition function. The transition function of a 
clear box is thus 

(S, OS) -, (R, NS) by procedure. 

A clear box is simply a program that implements 
the corresponding state box. Clear box forms 
include sequence, alternation, iteration, and concur- 
rent structures [lS]. A clear box may invoke black 
boxes at the next level for independent refmement. 
That is, the process is recursive, with each clear box 
possibly introducing opportunities for d e f ~ t i o n  of 
new, or extensions to existing, objects in black box, 
state box, and clear box forms. 

Through this stepwise refinement process, box 
structure specifications evolve as usage hierarchies of 
objects wherein the services of a given object may be 
used and reused in many places at many levels as 
required. Clear boxes play a crucial role in the hier- 
archy by ensuring the harmonious cooperation of 
objects at the next level of refmement. Appropriate 
objects and their clear box connections are derived 
out of immediate processing needs at each stage of 
refmement, not invented a priori with connections 
left to later invention. 

Box structures bring correctness verification to 
object architectures. State boxes can be verified with 
respect to their black boxes, and clear boxes verified 
with respect to their state boxes. [15]. 
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Cleanroom software design and verification 
Design and verification of clear box procedures is 

based on functional and algebraic properties of their 
constituent control structures. The control struc- 
tures of structured programming used in clear box 
design, namely, sequence, ifthenelse, whiledo, etc., 
are single-entry, single-exit structures with no side 
effects in control flow possible. In execution, a 
control structure simply transforms data from an 
input state to an output state. This transformation, 
known as a program function, corresponds to a 
mathematical function, that is, it defines a mapping 
from a domain to a range by a particular rule. 
Program functions can be derived from control 
structures. For example, for integers x, y, and z, the 
program function of the sequence, 

DO 
z := abs(y) 
w := max(x, z) 

is, in concurrent assignment form, 

OD 

w, z := max(x, abs(y)),  abs(y) 

and for integer x > = 0, the program function of the 
iteration, 

WHILE 

DO 

OD 

is, in English, 

X'l 

x : = x - 2  

set odd x to 1, even x to 0 

In stepwise refinement of clear box procedures, an 
intended function is defined and then refined into a 
control structure and new intended functions for 
refmement, as illustrated in the miniature example of 
Figure 3. Intended functions are recorded in the 
design, delimited by square brackets and attached to 
their refinements. Design Simplification is an impor- 
tant objective in refinement, to arrive at compact 
and straightforward designs for verification. The cor- 
rectness of each refinement is determined by deriving 
its program function, that is, the function it actually 
computes, and comparing it to the intended func- 
tion. 

A Correctness Theorem [20] defines how to make 
the comparison of intended functions and program 
functions in terms of correctness conditions to be 
verified for each control structure. The correctness 

... 
[set Y to  
ninllaui o f  
z and absolute 
value o f  XI ... 

... 
[set w to  
nininwn o f  
z and absolute 
value o f  X I  
DO 

[set y t o  absolute 
Value o f  X I  

[ set  Y t o  minimm 
of 2 and y1 

00 
... 

... 
[set w t o  
minimum of 
I and absolute 
Value of XI 
DO 

Iset y t o  absolute 
value o f  XI 
I F r < 0  
THEN 

ELSE 
y := -x  

y :* x 
= F I  

[ret w t o  minimum 
o f  z and y1 
I F y c i  
THEN 

ELSE 

F I  

Y := y 

" := z 

00 
... 

Figure 3. Stepwise Refinement of a Design Fragment 
with Intended Functions for Verification 

conditions make use of function composition for 
sequence, case analysis for alternation, and function 
composition and case analysis in a recursive equation 

Control 
Structures: 
___-------- 

Sequence 

If1 

g: 
h 

DO 

OD 

Ifthenelse 

[fl 
I F  P 
THEN 

g 
ELSE 

h 
FI 

Whiledo 

[fl 
WHILE p 
DO 

9 
OD 

Correctness 
Conditions: -_____----- 

For all arguments: 

Does g followed by h do f? 

Whenever p is true 
does g do f, and 

whenever p i s  false 
does h do f? 

Is termination guaranteed, and 
whenever p is true 

whenever p i s  false 
does g followed by f do f, and 

does doing nothing do f? 

Figure 4. Correctness Theorem Correctness Conditions 
in Question Form 
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for iteration. For sequence, one condition must be 
checked, for alternation, two conditions, and for iter- 
ation, three conditions, as shown in Figure 4. The 
conditions are language and subject matter inde- 
pendent. 

The nested and sequenced control structures of a 
clear box define a natural decomposition hierarchy 
that enumerates the independent subproofs required, 
one for each control structure. An Axiom of 
Replacement permits algebraic substitution of 
intended functions and their control structures in the 
hierarchy of subproofs. This substitution permits 
proof arguments to be localized to the control struc- 
ture at hand, and, in fact, the proofs for each control 
structure can be carried out in any order. A mini- 
ature program and its required subproofs are shown 
in Figure 5. 

In essence, clear boxes are composed of a frnite 
number of control structures, each of which is veri- 
fied by checking a finite number of correctness con- 
ditions. Even though all but the most trivial 
programs exhibit an essentially infinite number of 
execution paths, their verification can be carried out 
in a frnite number of steps. For example, the clear 
box of Figure 6 requires verification of exactly 15 
correctness conditions. 

The value to software quality of the reduction of 
verification to a frnite process cannot be overempha- 
sued. It permits Cleanroom development teams to 
verify every line of design and code through mental 
proofs of correctness in team reviews. Written proofs 
are also possible for extra confidence, for example, in 
verification of life- or mission-critical software. 

In team reviews, every correctness condition of 
every control structure is verified in turn. Every 
team member must agree that each condition is 
correct. An error is possible only if every team 
member incorrectly verifies a particular correctness 
condition. The requirement for unanimous agree- 
ment based on individual verifications results in soft- 
ware at or near zero defects prior to first execution. 

Function-theoretic verification scales up to large 
systems. Every structured system, no matter how 
large, has top level programs composed of familiar 
sequence, alternation, and iteration structures, which 
typically invoke large-scale subsystems at the next 
level involving thousands of lines of code (each of 
which has its own top level programs). The correct- 
ness conditions for these structures are scale-free, 
that is, they are invariant with respect to the size and 
complexity of the operations involved. Verification 

[fll 
DO 

UHILE 
Pl 

DO [f3] 
g3 
[f41 
IF 

P2 
THEN [f51 

94 
95 

ELSE [f61 
96 
97 

F I  
98 

OD 
OD 

Subproof s : 

fl = [ D O  gl;gZ;[f2] OD] ? 

---------- 

f2 = [UHILE pl DO [f3] OD] ? 

f3 = [ D O  g3;[f4];g8 OD] ? 

f4 = [IF p2 THEN [f51 ELSE If61 F I ]  

f5 - [DO g4;g5 OD] 7 

f6 - [DO g6;g7 OD] ? 

Figure 5. A Program and its Constituent Subproofs 

at high levels may take, and well be worth, more 
time, but it does not take more theory. 

Correctness verification produces quality results 
superior to unit testing and debugging. For each 
program part, function-theoretic correctness condi- 
tions permit verifcation of all possible effects on 
data. Unit testing, however, checks only effects of 
particular test paths selected out of many possible 
paths. A program or program part may have many 
paths to test, but only one function to verify. 

In addition, verification is more efficient than unit 
testing. Most verification conditions can be checked 
in a few seconds in team reviews, but unit tests take 
substantial time to prepare, execute, and check. 

Cleanroom software quality certification 
Techniques and benefits of statistical quality 

control in hardware development are well known. 
In cases where populations of items are too large to 
permit exhaustive testing, statistical sampling and 
analysis methods are employed to obtain scientific 
assessments of quality. 

In simple illustration, the process of statistical 
quality control in manufacturing is to 1) sample the 
population of items on a production line, 2) measure 
the quality of the sample with respect to a design 
assumed to be perfect, 3) extrapolate the sample 
quality to the population of items and 4) if the 
quality is inadequate, identify and correct flaws in 
production. In applying statistical quality control to 
hardware products, the statistics lie in the variation 
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of physical properties of items in the population. 
But in the case of software products, all copies are 
identical, bit for bit, so where are the statistics? 

It tumi out that software has a statistical property 
of great interest to developers and users, namely, its 
execution behavior. That is, how long on average 
will a software product execute before it fails, say by 
abending, producing incorrect output, etc.? Thus, 
the process of statistical quality control in software is 
to I) sample the essentially infinite population of 
possible user executions of a product based on the 
frequency of expected usage, 2) measure the quality 
of the sample by determining if the executions are 
correct, 3) extrapolate the quality of the sample to 
the population of possible executions, and 4) if the 
quality is inadequate, identify and correct flaws in 
the development process, for example, improvements 
to inadequate correctness verification. 

seq 
I 

P :- odd_nemhers(P) ) I  even_nenberr(P) 1 
PROC Odd_Before-Even (ALT 0) 

DATA 
odds : queue o f  integer [ initializes t O  empty 1 
evens : queue of integer [ initializes to empty 1 
x : integer 

ATAD 

I 0 := empty, 

WHILE 0 <> empty 
DO 

x := end(P) 

[ x i s  odd -) odd5 :=  Odds 1 1  x 

ite 
IF odd(x) 
THEN 

ELSE 

f l  

end(odds1 := x 

end(evens) := x 

OD 

[ P 
odds :=  empty 1 

WHILE odds 0 empty 
00 

:= 0 1 1  odds. 

x :- end(odds) ] seq 
end(0) := x 1 

00 

.= P ) I  evens, 
WHILE evens <, empty 
00 

x :=  end(evens)] seq 
end(0) :=  x 1 

OD 

CORP 

1 '  
vdo 

3 

Wdo 
3 

WdO l 3  
SE0 = sequence 
1TE s ifthenelse 
WOO = uhileds 

Figure 6. A Procedure with 15 Correctness Conditions 

This process, known as statistical usage testing 
[SI, amounts to testing software the way users intend 
to use it. The entire focus of statistical testing is on 
external system behavior, not internals of design and 
implementation as in conventional coverage testing. 
Cleanroom certification teams have deep knowledge 
of expected usage, but no knowledge of design inter- 
nals. 

As noted, the role of a Cleanroom certification 
team is not to debug software, but rather to certify 
its quality through statistical testing techniques. The 
certification may show adequate quality, but if not, 
the software will be returned to the development 
team for rework. 

In practice, Cleanroom quality certification is 
carried out in three steps, as follows: 

Step 1: Specify usage probability distributions. 
Usage probability distributions are models of 
intended usage of a software product. They define 
all possible usage patterns and scenarios, including 
erroneous and unexpected usage, together with their 
probabilities of occurrence. Usage probability dis- 
tributions represent the virtually infinite population 
of possible executions of a software product, together 
with their expected frequencies of use. 

Distributions are defined by the certification team 
based on box structure specifications of system func- 
tion, plus information on system usage probabilities 
obtained from prospective users, actual usage of 
prior versions, etc. Formal grammars permit 
compact representations of distributions for analysis 
and review. 

Step 2 Randomize test cases against usage proba- 
bility distributions. Test cases are derived from the 
distributions, such that every test represents actual 
usage and will effectively rehearse user experience 
with the product. Because the test cases are com- 
pletely prescribed by the distributions, test case pro- 
duction is a mechanical, and automatable, process. 

In miniature illustration, Figure 7 depicts a usage 
specification and corresponding test case generation 
for a program with four user stimuli to Update (U), 
Delete (D), Query (Q), and Print (P). A usage dis- 
tribution, simplified for illustration, shows projected 
probabilities of use of 32, 14, 46, and 8 percent for 
the four stimuli, respectively (omitting scenarios of 
use, etc., for simplicity). These probabilities are 
mapped onto an interval of 0 to 99, dividing it into 
four partitions proportional to the probabilities. 
Assuming a test case contains six stimuli, each test is 
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Usage Probsbi 1 I t i e s :  

Usage 
Program P o s s i b i l i t y  D i r t r l b u t i o n  
S t i u l i  D i s t r i b u t i o n  I n t e r v a l  

U (updata] 32t 8 ~ 31 

0 (delete]  141 32 - 45 

P (query1 461 46 ~ 91 

P ( p r i n t 1  81 92 - $9 

lest  Cas8 Generation: 

l e s t  lumber Random Nunben Test Case 

1 29 11 47 5 2  26 94 U U P P U P 

2 62 08 3g 78 82 65 P U D O Q P  

3 83 32 50 41 36 17 U D P 0 0 U 

4 36 48 86 82 28 77 0 0 P U U P 

... ... ... 

Figure 7. Simplified Usage Probability Distribution and 
Statistical Test Case Generation for a Program 
with Four User Stimuli 

generated by obtaining six two-digit random 
numbers, determining the partitions within which 
they reside, and appending the corresponding stimuli 
(U, D, Q, or P) to the test case. In this way, each 
test case is faithful to the distribution and represents 
a possible user execution of the system. 

Step 3: Execute random test cases, asscss success or 
failure, and compute quality measures. Each test case 
is executed and its results are verified against system 
specifications. Time in execution up to correct com- 
pletion or failure is recorded in appropriate units, for 
example, CPU time, wall clock time, number of 
transactions, etc. In effect, these times, known as 
interfail times, represent the quality of the sample of 
possible user executions. Interfail times accumulated 
in testing are processed by a quality certification 
model [6]  that computes product Mean Time To 
Failure (MTTF) and other measures of quality. 
Figure 8 depicts graphs produced by the certification 
model. The X and Y axes plot errors fixed and 
computed MTTF, respectively. The curve for high- 
quality software shows exponential improvement, 
such that the MTTF quickly exceeds the total test 
time, whereas the curve for low-quality software 
shows little MTTF growth. 

Because statistical usage testing embeds the soft- 
ware development process in a formal statistical 
design, MTTF measures provide a scientific basis for 
management action, unlike the anecdotal evidence of 

M T F  

E.tlnrt. 

Figure 8. Two Sample MTTF Graphs Produced by the 
Cleanroom Certification Model 

quality characteristic of coverage testing (if many, or 
few, errors are found, is that good or bad?). 

In incremental development, a usage probability 
distribution can be stratified into subsets that exer- 
cise increasing functional content as increments are 
added, with the full distribution in effect once the 
final increment is in place. In addition, alternate dis- 
tributions can be defined to permit independent cer- 
tification of infrequently used system functions (with 
low probability in primary distributions) that carry 
high consequences of fdure, for example, code for 
emergency shutdown of a nuclear reactor. 

But there is more to the story of statistical usage 
testing. Extensive analysis of errors in large-scale 
software systems reveals a spread in the failure rates 
of errors of some four orders of magnitude [2]. 
Virulent, high-rate errors can literally occur every few 
hours for some user, but low-rate errors may show 
up only after decades of use. High-rate errors have a 
profound effect on product quality, but they com- 
prise only a small fraction of total errors. In fact, 
this small fraction (under 3%) is responsible for 
nearly two-thirds of the software failures reported 

Because statistical usage testing amounts to testing 
software the way users will use it, errors tend to be 
found in failure-rate order on average, that is, any 
remaining virulent, high-rate errors tend to be found 
first. As a result, errors left behind, if any, at com- 
pletion of testing tend to be low-rate errors that are 
infrequently encountered by users. 

Traditional coverage testing does not find errors in 
failure-rate order, but rather, in random order. On 
any given coverage path, an error will either be 

c51. 
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found or not. If found, an error may be low rate, 
high rate or in between. That is, coverage testing is 
not biased to find errors in any particular rate order. 
Finding and fixing low-rate errors has little effect on 
MTTF and the user perception of quality. But 
finding and fixing errors in failure-rate order has dra- 
matic effect, with each correction resulting in sub- 
stantial improvement in MTTF. In fact, statistical 
usage testing is more than 20 times more effective at 
extending MTTF than is coverage testing [SI. 
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