
Outline

• Principles form the basis of methods,
techniques, methodologies and tools

• Seven important principles that may be
used in all phases of software
development

• Modularity is the cornerstone principle
supporting software design

• Case studies

Application of principles

• Principles apply to process and product
• Principles become practice through methods
and techniques

• often methods and techniques are packaged in a
methodology

• methodologies can be enforced by tools

A visual representation

Principles

Methodologies

Principles

Methods
and techniques

Methodologies

Tools

Key principles

• Rigor and formality
• Separation of concerns
• Modularity
• Abstraction
• Anticipation of change
• Generality
• Incrementality

Rigor and formality

• Software engineering is a creative design
activity, BUT

• It must be practiced systematically
• Rigor is a necessary complement to
creativity that increases our confidence in
our developments

• Formality is rigor at the highest degree
• software process driven and evaluated by
mathematical laws

Examples: product

• Mathematical (formal) analysis of program
correctness

• Systematic (rigorous) test data derivation

Example: process

• Rigorous documentation of development steps
helps project management and assessment of
timeliness

Separation of concerns

• To dominate complexity, separate the issues
to concentrate on one at a time

• "Divide & conquer" (divide et impera)
• Supports parallelization of efforts and
separation of responsibilities

Example: process

• Go through phases one after the other (as in
waterfall)

• Does separation of concerns by separating
activities with respect to time

Example: product

• Keep product requirements separate
• functionality
• performance
• user interface and usability

Modularity

• A complex system may be divided into simpler
pieces called modules

• A system that is composed of modules is
called modular

• Supports application of separation of concerns
• when dealing with a module we can ignore details
of other modules

Cohesion and coupling

• Each module should be highly cohesive
• module understandable as a meaningful unit
• Components of a module are closely related to one
another

• Modules should exhibit low coupling
• modules have low interactions with others
• understandable separately

A visual representation

(a) (b)

high coupling low coupling

Abstraction

• Identify the important aspects of a
phenomenon and ignore its details

• Special case of separation of concerns
• The type of abstraction to apply depends
on purpose

• Example : the user interface of a watch
(its buttons) abstracts from the watch's
internals for the purpose of setting time;
other abstractions needed to support
repair

Abstraction ignores details

• Example: equations describing complex circuit
(e.g., amplifier) allows designer to reason
about signal amplification

• Equations may approximate description,
ignoring details that yield negligible effects
(e.g., connectors assumed to be ideal)

Abstraction yields models

• For example, when requirements are analyzed
we produce a model of the proposed
application

• The model can be a formal or semiformal
description

• It is then possible to reason about the
system by reasoning about the model

An example

• Programming language semantics described
through an abstract machine that ignores
details of the real machines used for
implementation

• abstraction ignores details such as precision of
number representation or addressing mechanisms

Abstraction in process

• When we do cost estimation we only take
some key factors into account

• We apply similarity with previous systems,
ignoring detail differences

Anticipation of change

• Ability to support software evolution requires
anticipating potential future changes

• It is the basis for software evolvability
• Example: set up a configuration management
environment for the project (as we will
discuss)

Generality

• While solving a problem, try to discover if it
is an instance of a more general problem
whose solution can be reused in other cases

• Carefully balance generality against
performance and cost

• Sometimes a general problem is easier to
solve than a special case

Incrementality

• Process proceeds in a stepwise fashion
(increments)

• Examples (process)
• deliver subsets of a system early to get early
feedback from expected users, then add new
features incrementally

• deal first with functionality, then turn to
performance

• deliver a first prototype and then
incrementally add effort to turn prototype
into product

Case study: compiler

• Compiler construction is an area where
systematic (formal) design methods have been
developed

• e.g., BNF for formal description of language
syntax

Separation of concerns example

• When designing optimal register allocation
algorithms (runtime efficiency) no need to
worry about runtime diagnostic messages (user
friendliness)

Modularity

• Compilation process decomposed into phases
• Lexical analysis
• Syntax analysis (parsing)
• Code generation

• Phases can be associated with modules

Representation of modular structure

Lexical
analysis

Parse
tree

Source
code

Symbol
table

Object
code

“Tokenized”
code

Parsing Code
generation

Lexical
diagnostic
s

Syntax diagnostics
boxes represent modules
directed lines represent interfaces

Module decomposition may be iterated

further modularization of code-generation module

Intermediate
code generationParse

tree

Object
code

Code
genration

Intermediate
code

Symbol table

Machine code
generation

Abstraction

• Applied in many cases
• abstract syntax to neglect syntactic details such
as begin…end vs. {…} to bracket statement
sequences

• intermediate machine code (e.g., Java Bytecode)
for code portability

Anticipation of change

• Consider possible changes of
• source language (due to standardization
committees)

• target processor
• I/O devices

Generality

• Parameterize with respect to target machine
(by defining intermediate code)

• Develop compiler generating tools (compiler
compilers) instead of just one compiler

Incrementality

• Incremental development
• deliver first a kernel version for a subset of the
source language, then increasingly larger subsets

• deliver compiler with little or no
diagnostics/optimizations, then add
diagnostics/optimizations

Case study (system engineering): elevator system
• In many cases, the "software engineering"
phase starts after understanding and
analyzing the "systems engineering” issues

• The elevator case study illustrates the point

Rigor&formality (1)

• Quite relevant: it is a safety critical system
• Define requirements

• must be able to carry up to 400 Kg. (safety
alarm and no operation if overloaded)

• emergency brakes must be able to stop elevator
within 1 m. and 2 sec. in case of cable failures

• Later, verify their fulfillment

Separation of concerns

• Try to separate
• safety
• performance
• usability (e.g, button illumination)
• cost

• although some are strongly related
• cost reduction by using cheap material can make
solution unsafe

A modular structure

Elevator

Control
apparatus

B3

B2

B1

buttons at floor i

Module decomposition may be iterated

Elevator Engine

Brakes
Cabin

Internal
Buttons

Control
apparatus

Abstraction

• The modular view we provided does not
specify the behavior of the mechanical and
electrical components

• they are abstracted away

Anticipation of change, generality

• Make the project parametric wrt the number
of elevators (and floor buttons)

Elevators

Control
apparatus

Floor
buttons

	Outline
	Application of principles
	A visual representation
	Key principles
	Rigor and formality
	Examples: product
	Example: process
	Separation of concerns
	Example: process
	Example: product
	Modularity
	Cohesion and coupling
	A visual representation
	Abstraction
	Abstraction ignores details
	Abstraction yields models
	An example
	Abstraction in process
	Anticipation of change
	Generality
	Incrementality
	Case study: compiler
	Separation of concerns example
	Modularity
	Representation of modular structure
	Module decomposition may be iterated
	Abstraction
	Anticipation of change
	Generality
	Incrementality
	Case study (system engineering): elevator system
	Rigor&formality (1)
	Separation of concerns
	A modular structure
	Module decomposition may be iterated
	Abstraction
	Anticipation of change, generality

