
Questions

• What is the life cycle of a software
product?

• Why do we need software process
models?

• What are the goals of a software process
and what makes it different from other
industrial processes?

Software Processes

• Coherent sets of activities for
specifying, designing,
implementing and testing
software systems

Product stages

Requirements

Arch/Design

Deployment/
Maintenance

Construction

Measurement/
Evaluation Doc Team

work

Mgmt
Of
Artifacts

Evolution
Products

Product, process stages

Requirements

Arch/Design

Deployment/
Maintenance

Construction

Measurement/
Evaluation Doc Team

work

Mgmt
Of
Artifacts

Evolution

Products Processes

What is a software process model?

• A simplified representation of a software
process, presented from a specific perspective

• Examples of process perspectives are
• Workflow perspective - sequence of activities
• Data-flow perspective - information flow
• Role/action perspective - who does what

• Generic process models
• Waterfall
• Evolutionary development
• Formal transformation
• Integration from reusable components

Software process model

• Attempt to organize the software life cycle
by

• defining activities involved in software
production

• order of activities and their relationships
• Goals of a software process

• standardization, predictability, productivity, high
product quality, ability to plan time and budget
requirements

Code&Fix

The earliest approach
• Write code
• Fix it to eliminate any errors that have

been detected, to enhance existing
functionality, or to add new features

• Source of difficulties and deficiencies
• impossible to predict
• impossible to manage

Models are needed

• Symptoms of inadequacy: the software
crisis
• scheduled time and cost exceeded
• user expectations not met
• poor quality

• The size and economic value of software
applications required appropriate "process
models"

Process model goals
(B. Boehm 1988)

"determine the order of stages involved in
software development and evolution,
and to establish the transition criteria for
progressing from one stage to the next.
These include completion criteria for the current
stage plus choice criteria and entrance criteria
for the next stage. Thus a process model addresses
the following software project questions:

What shall we do next?
How long shall we continue to do it?"

Process as a "black box"

Product

Process

Informal
Requirements

Problems

• The assumption is that requirements can be
fully understood prior to development

• Interaction with the customer occurs only at
the beginning (requirements) and end (after
delivery)

• Unfortunately the assumption almost never
holds

Process as a "white box"

Product

Process

Informal
Requirements

feedback

Advantages

• Reduce risks by improving visibility
• Allow project changes as the project
progresses

• based on feedback from the customer

Feasibility study

• Why a new project?
• cost/benefits tradeoffs
• buy vs make

• Requires to perform preliminary requirements
analysis

• Produces a Feasibility Study Document
1. Definition of the problem
2. Alternative solutions and their expected benefits
3. Required resources, costs, and delivery dates in each

proposed alternative solution

Little-JIL notation

Interface badge
Pre-requisite badge

Step name
Post-requisite
badge

Step bar

Handlers
badgeSequencing badge

Reactions badge

Example process

Preorder

Process
Request

Form
Order

Provide
Service

Assign Customer
To Bundle

Update
Package

Out:customer ID, service types

Out:order
Out: bundle update

Receive
Service
Request

ID
Customer

Add FeatureUpdate
Services

Assign Package
To Bundle

Classify Components

Input example (BOOD process)

Generic software process models

• The waterfall model
• Separate and distinct phases of specification and
development

• Evolutionary development
• Specification and development are interleaved

• Formal systems development
• A mathematical system model is formally
transformed to an implementation

• Reuse-based development
• The system is assembled from existing components

Waterfall model

Requirements
definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Waterfall model phases
• Requirements analysis and definition
• System and software design
• Implementation and unit testing
• Integration and system testing
• Operation and maintenance
• The drawback of the waterfall model is the
difficulty of accommodating change after the
process is underway

Waterfall model problems

• Inflexible partitioning of the project into
distinct stages

• This makes it difficult to respond to changing
customer requirements

• Therefore, this model is only appropriate
when the requirements are well-understood

Rapid application development model

• Requirements are well understood
• Fourth generation techniques are used
• The system must be modularizable
• High performance very difficult to obtain
• New technologies are high risk

Evolutionary development
• Exploratory development

• Objective is to work with customers and to evolve
a final system from an initial outline specification.
Should start with well-understood requirements

• Throw-away prototyping
• Objective is to understand the system
requirements. Should start with poorly understood
requirements

Evolutionary development

Validation
Final

version

Development
Intermediate

versions

Specification
Initial

version

Outline
description

Concurrent
activities

Evolutionary development

• Problems
• Lack of process visibility
• Systems are often poorly structured
• Special skills (e.g. in languages for rapid
prototyping) may be required

• Applicability
• For small or medium-size interactive systems
• For parts of large systems (e.g. the user
interface)

• For short-lifetime systems

Formal systems development

• Based on the transformation of a
mathematical specification through different
representations to an executable program

• Transformations are ‘correctness-preserving’
so it is straightforward to show that the
program conforms to its specification

• Embodied in the ‘Cleanroom’ approach to
software development

Formal systems development

Requirements
definition

Formal
specification

Formal
transformation

Integration and
system testing

Formal transformations

R2
Formal

specification
R3

Executable
program

P2 P3 P4

T1 T2 T3 T4

Proofs of transformation correctness

Formal transformations

R1

P1

Formal systems development

• Problems
• Need for specialised skills and training to apply
the technique

• Difficult to formally specify some aspects of the
system such as the user interface

• Applicability
• Critical systems especially those where a safety or
security case must be made before the system is
put into operation

Reuse-oriented development

• Based on systematic reuse where systems are
integrated from existing components or COTS
(Commercial-off-the-shelf) systems

• Process stages
• Component analysis
• Requirements modification
• System design with reuse
• Development and integration

• This approach is becoming more important but
still limited experience with it

Reuse-oriented development

Requirements
specification

Component
analysis

Development
and integration

System design
with reuse

Requirements
modification

System
validation

Process iteration

• System requirements ALWAYS evolve in the
course of a project so process iteration
where earlier stages are reworked is always
part of the process for large systems

• Iteration can be applied to any of the generic
process models

• Two (related) approaches
• Incremental development
• Spiral development

Incremental development

• Rather than deliver the system as a single
delivery, the development and delivery is broken
down into increments with each increment
delivering part of the required functionality

• User requirements are prioritised and the highest
priority requirements are included in early
increments

• Once the development of an increment is
started, the requirements are frozen though
requirements for later increments can continue to
evolve

Incremental development

Validate
increment

Develop system
increment

Design system
architecture

Integrate
increment

Validate
system

Define outline
 requirements

Assign requirements
 to increments

System incomplete

Final
system

Incremental development advantages

• Customer value can be delivered with each
increment so system functionality is available
earlier

• Early increments act as a prototype to help
elicit requirements for later increments

• Lower risk of overall project failure
• The highest priority system services tend to
receive the most testing

Extreme programming

• New approach to development based on the
development and delivery of very small
increments of functionality

• Relies on constant code improvement, user
involvement in the development team and
pairwise programming

Spiral development

• Process is represented as a spiral rather than
as a sequence of activities with backtracking

• Each loop in the spiral represents a phase in
the process.

• No fixed phases such as specification or
design - loops in the spiral are chosen
depending on what is required

• Risks are explicitly assessed and resolved
throughout the process

Spiral model of the software process

Risk
analysis

Risk
analysis

Risk
analysis

Risk
analysis Proto-

type 1

Prototype 2

Prototype 3
Opera-
tional
protoype

Concept of
Operation

Simulations, models, benchmarks

S/W
requirements

Requirement
validation

Design
V&V

Product
design Detailed

design

Code
Unit test

Integration
testAcceptance

testService Develop, verify
next-level product

Evaluate alternatives
identify, resolve risks

Determine objectives
alternatives and

constraints

Plan next phase

Integration
and test plan

Development
plan

Requirements plan
Life-cycle plan

REVIEW

Spiral model sectors

• Objective setting
• Specific objectives for the phase are identified

• Risk assessment and reduction
• Risks are assessed and activities put in place to
reduce the key risks

• Development and validation
• A development model for the system is chosen
which can be any of the generic models

• Planning
• The project is reviewed and the next phase of the
spiral is planned

	Questions
	Software Processes
	Product stages
	Product, process stages
	What is a software process model?
	Software process model
	Code&Fix
	Models are needed
	Process model goals (B. Boehm 1988)
	Process as a "black box"
	Problems
	Process as a "white box"
	Advantages
	Feasibility study
	Little-JIL notation
	Example process
	Classify Components
	Input example (BOOD process)
	Generic software process models
	Waterfall model
	Waterfall model phases
	Waterfall model problems
	Rapid application development model
	Evolutionary development
	Evolutionary development
	Evolutionary development
	Formal systems development
	Formal systems development
	Formal transformations
	Formal systems development
	Reuse-oriented development
	Reuse-oriented development
	Process iteration
	Incremental development
	Incremental development
	Incremental development advantages
	Extreme programming
	Spiral development
	Spiral model of the software process
	Spiral model sectors

