
Building Mobile Edge Infrastructure in an

Uncertain Environment

Xiao Chen

Department of Computer Science

Texas State University

San Marcos, TX 78666

xc10@txstate.edu

Abstract—With the prevalence of mobile devices, more and

more mobile applications are offloading computation-intensive

jobs to remote cloud data centers. Although such operations

could substantially enhance the capability of mobile devices, a

long communication delay is inevitable. To mitigate the problem,

mobile edge computing (MEC) has emerged, empowering cloud

networks by pushing resources to the network edge to be near

end-users. There are two edge providers: edge infrastructure

providers (EIPs) and edge service providers (ESPs). Most work

on MEC so far has fallen into the arena of ESPs, who are

thinking about how to aggregate resources from multiple EIPs to

offer value-added services to end-users. In this paper, however,

we discuss the problems faced by EIPs, because only when

EIPs install sufficient edge resources in the right places will

the ESPs be able to provide better services to the end-users.

More specifically, we ask: where should we install edge resources

and how many should we install, based on user movement and

demand? To answer the first question, we use the clustering

and elbow methods, and for the second question, we formulate

an optimization problem to minimize the expected cost of over-

installation and under-installation. To test the feasibility of our

approaches, we implement the solutions using a real trace dataset

of taxi cabs in San Francisco as an example. We hope our

methods can guide the EIPs to build a good edge infrastructure

so that the ESPs can further improve user experience on a solid

physical foundation.

Index Terms—area of interest, cloud, edge infrastructure

providers, edge resources, edge service providers

I. INTRODUCTION

With the prevalence of mobile devices, such as smartphones

and tablet computers, more and more mobile applications are

offloading computation-intensive jobs to remote cloud data

centers [10]. Although such operations could substantially

enhance the capability of mobile devices, a long communi-

cation delay is inevitable. To mitigate the problem, mobile

edge computing (MEC) has emerged and empowered cloud

networks by pushing resource, e.g., storage and processing

capacity, to the network edge to be close to the end-users, thus

providing users with quick and powerful computing, energy

efficiency, storage capacity, and mobility support [8].

Fig. 1 shows an edge-cloud network consisting of a cloud,

edge resources, and mobile end-users. The edge resources

are located in various places and serve a large number of

end-users. The users can access the edge resources through

access points (APs). The MEC technology reduces the load on

Fig. 1. Edge resources and mobile end-users in an edge-cloud network

the core network, decreases communication delay, and hosts

applications and services in a more cost-effective manner.

There are two edge providers [13]: edge infrastructure

providers (EIPs), who manage the physical edge infrastructure,

and edge service providers (ESPs), who aggregate resources

from multiple EIPs to place service entities and offer value-

added services to end-users. Most work on MEC thus far

has fallen into the arena of ESPs. These papers assume

that the edge resources are deployed and then design algo-

rithms to address problems such as computation offloading

[6], [13], [16], low latency [3], [5], [11], storage [8], and

energy efficiency [4], [7]. Computation offloading is a process

of migrating computing tasks from mobile devices to more

powerful sources, such as clouds, grids, or clusters [12]. This is

an essential component of MEC because mobile devices have

limited resources that are not adequate to handle computation-

intensive tasks. For low latency, it is one of the motivations

for building MEC: to reduce the latency between mobile

devices and clouds to improve user experience. The storage

aspect is straightforward because end-users need to utilize

edge resources to overcome their device storage limitations.

And energy efficiency is, in most cases, addressed indirectly

via computational offloading.

In this paper, unlike most of the discussions in the literature,

we investigate problems for the EIPs. We plan to improve

MEC efficiency from the very beginning when EIPs deploy

physical edge resources. They need to make the following de-

cisions: where to install the edge resources and how many edge

resources to place in a location to satisfy end-users’ demand.

These questions are challenging because we are building edge

infrastructure in an uncertain environment where users move

around. Moreover, these questions are very important, as if

sufficient resources are placed in the right locations based

on user mobility and demand, it will facilitate the algorithms

of offloading, latency, storage, and energy as the resources

are available where users need them the most. Furthermore,

by answering these two questions, EIPs are able to calculate

their investment in the business and get the most profit.

Therefore, in this paper, we propose feasible solutions to these

practical questions based on statistical data. To answer the first

question, we use clustering [18] and elbow [17] methods to

identify Areas of Interest (AoIs) where we can install edge

resources. For the second question, in each AoI, we formulate

the question as a minimization problem to find the best number

of resources to install to minimize the expected cost of the

over-installation and under-installation. We give a detailed

description of these methods and implement the solutions

using a real trace dataset of taxi cabs in San Francisco [15]

to test our methods. Implementation results show that our

methods are feasible and can provide some guidance to EIPs

to build MEC in an uncertain environment.

The differences of our work from others and the key

contributions of our work are as follows:

• we consider the practical problems faced by EIPs in

building MEC.

• we propose methods to solve the problems in an uncer-

tainty environment.

• we implement our solutions using real trace data, verify-

ing the feasibility of our methods.

The rest of the paper is organized as follows: Section

II references the related work. Sections III and IV present

the problems and their solutions. Section V describes the

implementation of the methods, and the conclusion is in

Section VI.

II. RELATED WORK

Since the emergence of MEC, research in the literature has

mostly focused on the following aspects.

Offloading. In [16], Sardellitti et al. proposed an algorithm-

based design, called successive convex approximation (SCA),

which optimizes computational offloading across densely de-

ployed multiple radio access points. Chen et al. [6] designed an

efficient computation offloading model using a game theoretic

approach in a distributed manner. The game theory targeted

the NP-hard problem of computation offloading incurred by

multiuser computation offloading and provided a solution by

attaining the Nash equilibrium of the multiuser computation

offloading game. In [13], Ma et al. aimed to optimize the

revenue earned by each edge node by optimally offloading

tasks to the edge nodes. The authors formulated the NP-hard

revenue-driven online task offloading (ROTO) problem and

put forward the Level Balanced Allocation (LBA) algorithm

to solve it.

Low latency. In [3], Abdelwahab et al. proposed REPLI-

SOM, an edge cloud architecture and LTE enhanced mem-

ory replication protocol, to avoid latency issues. The LTE-

integrated edge cloud provides computation and storage re-

sources at the edge for resource-intensive services. Kumar et

al. [11] presented a vehicular delay-tolerant network (VDTN)-

based smart grid data management scheme. The authors inves-

tigated the use of VDTNs to transmit data to multiple smart

grid devices, exploring the MEC environment. A store-and-

carry forward mechanism for message transmission was used

to avoid possible network bottlenecks and data latency. In

[5], Chen et al. considered a general edge scenario of bursty

requests, and put forward DeepLoad, an intelligent scheduler

for offloading bursty requests to collaborating edge servers via

deep reinforcement learning in edge environments. Their goal

was to maximize the number of requests whose completion

times were ahead of their deadlines.

Storage. In [8], Jararweh et al. presented a software-

defined system for MEC (SDMEC). The framework connected

software-defined system components to MEC to further extend

its capabilities.

Energy efficiency. In [4], Beck et al. proposed ME-VoLTE,

an architecture that integrates MEC with voice over LTE. The

encoding of video calls is offloaded to the MEC server located

at the base station (eNodeB). Offloading video encoding

through external services helps to increase the battery lifetime

of the user equipment and enhances power management. El-

Barbary et al. [7] put forward DroidCloudlet, which is based

on commodity mobile devices and can enhance mobile battery

lifetime by migrating data-intensive and compute-intensive

tasks to rich media.

All of the above research aims to improve user experience

after edge resources are deployed. We will discuss problems

that arise when people decide to install these resources in an

edge infrastructure. We believe that if a sufficient number

of edge resources are placed in the right locations where

mobile users need them the most initially, it will facilitate

solutions to the aforementioned problems and further improve

user satisfaction. This is the task addressed in this paper.

III. WHERE TO INSTALL RESOURCES?

In this section, we will address the first question: where to

install edge resources. To answer the question, we need to find

the Areas of Interest (AoIs) based on user mobility. Intuitively,

an AoI is an area that many users go to frequently. Thus,

we can pick several observation periods in the user mobility

data and extract user locations in each period. Then, we apply

clustering analysis [1] to the user locations (data points). The

clusters identified are the AoIs in that observation period. We

repeat the process for all the observation periods and the final

AoIs are the overlap of these AoIs. Once an AoI is known, we

can install edge resources in a central location such as coffee

shop, station, or intersection in the AoI.

In the above method, when we do the clustering, a challenge

is to find an appropriate clustering algorithm and a proper

cluster number since user locations change all the time. To

address these issues, we adopt the Hierarchical Agglomerative

Clustering (HAC) method [14] and the Elbow method [17] to

generate clusters and decide a suitable cluster number. The

algorithm finding areas of interest (FAI) that embeds the two

methods is described in Algorithm 1.

Algorithm 1 Finding Areas of Interest (FAI)

Require: Input: m user locations as data points

Output: Clusters C for each k (1 ≤ k ≤ m), vector J

containing all the J values, a suitable cluster number k

1: /* Clustering for each k */

2: put each data point into a cluster;

3: k = m; J = ∅;

4: while k > 1 do

5: combine the two clusters with the smallest distance into

one and treat it as one cluster in the next round;

6: calculate Jk =
∑k

j=1

∑

i∈Cj
||di − oj ||22 and append it

to vector J ;

7: k = k − 1;

8: end while

9: /* determine a suitable k using the elbow method */

10: reverse order the elements in J ;

11: draw the relationship between J and corresponding k;

12: identify the elbow and decide an appropriate k;

In the algorithm, we input m user locations as data points

for clustering. The maximum number of clusters for m data

points is m (each data point is a cluster) and the minimum

number of clusters is one (all the data points are put into one

cluster). To decide a suitable cluster number, we output the

clusters C for each k in [1,m]. We use a bottom-up approach.

In step 2 of the algorithm, we put each data point into a cluster.

The number of clusters k is m at this point. We initialize a

vector J , which will hold J values later, to be empty. Then

we go into a loop. As long as the number of clusters k is

greater than one, we combine two clusters with the smallest

distance into one. One can use many metrics to measure the

distance between the two clusters. For example, we can use

the distance between two closest points in the two clusters,

the distance between two farthest points in the two clusters,

and so on. Here we use a popular distance metric: the distance

between the centroids of the two clusters. Next, we calculate

the J value of the current clusters in step 6 and append it

to the J vector. In the calculation of the J value, we sum

up in all the clusters the distance squared between each data

point di in a cluster and its centroid oj . Now, the two closest

clusters are combined into one, and the number of clusters k

is reduced by one. This process continues until all the clusters

are grouped into one.

At this point, the loop is terminated and the J values of

all the ks are stored into vector J . Next, we can plot the

relationship between k and J in a graph to determine an

appropriate k using the elbow method. So far, the J values

added in each round have been in increasing order. As the

number of clusters k decreases in each round, the J value

increases, as is proved in Theorem 1. In order to show the

elbow naturally, we reverse-order the elements in J in step

10. After we reorder them, they will be in decreasing order.

When we plot the figure, an elbow will appear and the

values on the elbow are the candidates for k. In mathematical

optimization, the elbow is a common heuristic cutoff point

where diminishing returns are no longer worth the additional

cost. In this clustering algorithm, this means one should stop

when combining another cluster doesn’t give much better

modeling of the data. Since the elbow method is a heuristic

method, the candidates at the elbow may not be unique.

Several points can be good choices as long as they have a

clear explanation.

Theorem 1: In Algorithm 1, the J value calculated in each

round of the loop satisfies: Jk < Jk−1, for k = m,m −
1, · · · , 2.

Sketch of proof. Jk is the J value when there are k clusters and

after two closest clusters are combined into one, the J value

of the resultant clusters is Jk−1. So, the difference between Jk
and Jk−1 lies in the two clusters that are combined. Assume

these two clusters are Ci and Cj with centroids oi and oj ,

respectively. The combined cluster is Cij with a centroid

of oij . For a data point di that belongs to Ci, we have

||di − oij ||22 > ||di − oi||22. Likewise, for a data point dj that

belongs to Cj , we have ||dj − oij ||
2
2 > ||dj − oj ||

2
2. That is,

the distance between any data point in these two clusters and

the new centroid oij is larger than the distance between the

data point and its original centroid before the merging. The

reason is as follows: let us look at cluster Ci and suppose dj
is the closest data point in Cj to any data point in Ci. That

is, dj makes ||dj − di||22 minimum among all the data points

in Cj and Ci. Now, for any two data points di and d′i in Ci,

we have ||di − dj ||
2
2 > ||di − d′i||

2
2. Otherwise, dj should have

been in the same cluster as one of them before di and d′i were

put into one cluster. If cluster Ci has only one data point, then

di and d′i are the same data point and the result is obvious.

Therefore, the joining of dj into cluster Ci makes the distance

squared from each data point in cluster Ci to the new centroid

larger than that to the original centroid oi. Note that dj is the

closest data point to cluster Ci. If we add other farther away

data points in Cj to cluster Ci, the conclusion will be even

more so. Similarly, if we look at cluster Cj and add data points

from Ci to Cj , the distance squared between each data point in

cluster Cj and the new centroid will also be increased. Since

all the data points in Ci and Cj have their distances to the

new centroid increased from before, Jk < Jk−1. That proves

the theorem. �

IV. HOW MANY RESOURCES TO INSTALL?

Now that we have decided the AoIs for the edge resources,

the next question is how many edge resources to install in each

location. The answer to this question depends on user demand,

which we assume is proportional to the number of users in the

AoI. Intuitively, the more users go to the AoI, the greater the

demand. We formulate this problem specifically below.

A. Problem Formulation

Suppose we have identified an AoI in which we plan to

install edge resources. The user demand for these resources

in the AoI is not known due to the mobility of the users.

If we install more resources than demand (over-deployment),

there is a penalty denoted by Op. If we install fewer resources

than needed (under-deployment), there is a penalty denoted by

Up. For each resource, let Pc be the purchase cost, and Ru

be the revenue brought in by the resource. The unit of over-

allocation penalty Op = Pc, and the unit of under-allocation

penalty Up = Ru − Pc.

The demand X (in the unit of the number of resources)

at the location is unknown and assumed to be a continuous

random variable. We denote f(x) as the PDF of X and F (x)
as the CDF of X . We need to decide the number of resources

u to install in order to

min
u

z = E [Op ·max(0, u−X) + Up ·max(0, X − u)]

subject to u ≥ 0
(1)

In (1), E[· · ·] is the expected value. Our goal is to find the

optimal number of resources u so that the expected total cost

of over-deployment and under-deployment can be minimized.

B. Our Solution

To solve the minimization problem in (1), we take the

following steps. We first expand the expected value, z.

z =

∫

∞

x=0

[Op max(0, u− x) + Up max(0, x− u)] f(x) dx

=

∫ u

x=0

[Op(u− x)] f(x) dx +

∫

∞

x=u

[Up(x− u)] f(x) dx

= Op

∫ u

x=0

(u− x)f(x) dx + Up

∫

∞

x=u

(x− u)f(x) dx

= Op

[

u

∫ u

x=0

f(x) dx −

∫ u

x=0

xf(x) dx

]

+

Up

[
∫

∞

x=u

xf(x) dx − u

∫

∞

x=u

f(x) dx

]

= Op

[

uF (u)−

∫ u

x=0

xf(x) dx

]

+

Up

[
∫

∞

x=u

xf(x) dx − u(1− F (u))

]

(2)

Now we show that z is a convex function. We take the first

derivative

dz

du
= Op [F (u) + uf(u)− uf(u)] + Up [−uf(u)−

(1− F (u)) + uf(u)]

= OpF (u)− Up(1− F (u))

(3)

and the second derivative:

d2z

du2
= Opf(u) + Upf(u) > 0 (4)

The second derivative is great than zero, so z is convex. To

minimize z, we make the first derivative equal to zero and the

optimal value u∗ satisfies:

F (u∗) =
Up

Op + Up

= Pr(X ≤ u∗) (5)

Now, we can see that if we know the distribution of

demand X and its CDF, we are able to find u∗. For example,

suppose we know X follows a uniform distribution U(a, b).
Its CDF F (x) = x−a

b−a
. Therefore u∗

−a
b−a

=
Up

Op+Up
and then

u∗ =
bUp+aOp

Op+Up
. For other distributions, we can follow the

same way to find u∗. Even if demand X is not continuous,

we can still add up the discrete probabilities to obtain u∗.

Next, we show how to find the demand distribution given

user mobility data.

C. Finding Demand Distribution

In this paper, we assume that the demand of edge resources

in an AoI is proportional to the number of users in that area

at a certain time. The more users go to an AoI, the more edge

resources need to be installed in that location.

Given the number of users in an AoI at different times,

we can get data points (xi, yi), i = 1, 2, · · · representing the

number of users and the corresponding probability. Then, we

can use the fitting method [9] to find a distribution to fit these

data points. For a set of data points, multiple functions can

be used to fit the data. We want to find a fit that minimizes

SSE and makes R2 as close to 1 as possible. These metrics

are defined as follows:

The sum of squares due to error (SSE) and the total sum

of squares (SST):

SSE =
n
∑

i=1

(yi − ŷi)
2, SST =

n
∑

i=1

(yi − ȳi)
2

R2 = 1−
SSE

SST
≤ 1

.

Here, ŷi is the estimated value and ȳi is the mean. The

closer R2 is to 1, the smaller the error, and the better the

fitting. After we find a fitting function, we get the distribution

of demand X and its CDF. Then, we can obtain the optimal

number of edge resources u∗.

In the next section, we will use a concrete example to

demonstrate the methods we have described here.

V. IMPLEMENTATION

In this section, we implement our methods in Matlab using

a real trace dataset.

A. Dataset Used

We needed a dataset that could mimic user mobility, so we

downloaded a trace dataset of taxi cabs in San Francisco [15].

A taxi trace was chosen because it can show user movement

in a large area. The dataset contains GPS coordinates of

approximately 500 taxis collected over 30 days in the Bay

Area. To adapt to our implementation, we treated each taxi

cab as a mobile user. Every taxi had a mobility trace file

which had the following format - each line contained [latitude,

longitude, occupancy, time], e.g.: [37.75134, −122.39488, 0,

37°40'N

37°45'N

37°50'N
L
a
ti
tu

d
e

122°35'W 122°30'W 122°25'W 122°20'W 122°15'W

Longitude

Esri, HERE, Garmin, NGA, USGS, NPS
 2 mi

 5 km

Fig. 2. Taxis in the Bay Area from the trace

1213084687], where latitude and longitude were in decimal

degrees, occupancy showed if a cab had a fare (1 = occupied,

0 = free), and time was in UNIX epoch format. We used the

latitude, longitude, and time information of each taxi in our

implementation; occupancy was irrelevant here.

B. Finding Areas of Interest (AoIs)

Given the taxi dataset, we wanted to identify the AoIs to

install edge resources. To do that, we picked 5 observation

periods everyday from May 18, 2008 to June 9, 2008 in the

trace. Each observation period gave us a snapshot of the taxi

locations in the Bay Area. Then, we applied Algorithm 1 to

the snapshot to find the AoIs for this period. We repeated the

process for all the observation periods and then settled down

the final AoIs in overlapping areas.

Let us focus on one observation period [1212000000,

1212000060] ([May 28, 2008, 6 : 40 : 00 PM, May 28, 2008
6 : 41 : 00 PM]) as an example to locate AoIs. We extracted

taxi locations in this period. Here, we used a 60-second time

period instead of a time point because taxis may not report

at exactly the time point. In that time frame, we caught 346
taxis (red star) in various locations in the Bay Area shown in

Fig. 2.

Next, we fed taxi locations (data points) into Algorithm 1 to

find AoIs. From the algorithm, we obtained clusters when k =
{346, 345, · · · , 1}. For each k, we calculated the J value of

the clusters. After all the J values were obtained, we reverse-

ordered them and then drew the relationship between k and J

which is shown in Fig. 3. In the figure, the horizontal axis is

the number of clusters k, starting from 1 (representing all the

data points are included in one cluster) to 346 (representing

each data point is a cluster in the beginning). The vertical axis

is the corresponding J value. We can see that the J values

of the first few ks decrease very quickly. That means it is

cost-effective to continue splitting the clusters. Note that the

operation is ‘splitting’ now instead of ‘combining’ because we

reverse-ordered the J values. Then there is an obvious elbow.

This is the cutoff section. After that, the curve becomes flat,

showing the return will not be worth the cost to continue the

splitting process. According to the elbow method [17], the

0 50 100 150 200 250 300 350

Cluster

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

J
v
al

u
e

J value and clusters

X 8

Y 648.6
X 11

Y 269.2

Fig. 3. Elbow in the J values

points on the elbow, such as 8, 11 are good heuristics for k.

EIPs can decide which one to pick based on their budget, since

there is usually a construction cost to deploy edge resources in

a location. If the budget is high, a large number is affordable

and edge resources can be installed in more AoIs. Otherwise,

a smaller number can be chosen.

Finally, we settled on 11 AoIs. We represented those areas

using rectangles since many streets are horizontal or vertical

in the city. The format of a rectangle is [Latmin, Latmax,

Lonmin, Lonmax]. The first element is the minimum latitude

of the rectangle, the second element is the maximum latitude,

the third is the minimum longitude, and the last one is the

maximum longitude of the rectangle area.

C. Finding number of resources to install

In this section, we decide how many edge resources to

allocate in each AoI. We take one of the AoIs we identified

as an example. This AoI has a rectangle area of [37.712550,

37.764280, −122.446520, −122.391280].

To find the number of resources to install, we need to find

out the distribution of demand. We do not have user demand

data in the trace, so we assume the demand is proportional

to the number of users and, therefore, is proportional to the

number of taxis in the AoI at a certain time. To simplify,

we just set the coefficient between the demand and the taxi

number to one. Intuitively, the more taxis there are, the more

demand there is. So now we need to find out the distribution of

taxi numbers and then calculate the optimal u∗ to minimize z

in equation (1). If user demand data are available, the method

described here still applies.

The following is the detailed process. First, we counted

the number of taxis every 15 minutes from 6am to 10pm

each day from May 18, 2008 to June 9, 2008 in the AoI.

After we obtained all the taxi numbers, the probability of each

taxi number was known. Then, the dots representing the taxi

number and its probability can be drawn in Fig. 4.

Next, we tried curve fitting and obtained a normal distribu-

tion below that best fits the dots in the figure.

y = a ∗ e−(x−b
c

)2 (6)

0 10 20 30 40 50 60 70 80 90

Taxis number

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

P
ro

b
a
b
ili

ty
Taxis number vs. Probability

Normal distribution fit

Fig. 4. Fit curve

In the above fitting function, x is the taxi number and y

is the probability of the taxi number. Parameters a = 0.0347,

b = 49.3, and c = 16.15. The fitting curve is shown in Fig.

4. The SSE of the fitting is 0.0009034 and R2 is 0.9309,

indicating that it is a good fitting.

Now that we know the demand X follows a normal dis-

tribution, its CDF is known. We are able to find the u∗ in

equation (5). As for Up and Op, the EIPs can get the values

based on their business. Then
Up

Op+Up
is known. Let us assume

Up

Op+Up
= 0.7. Before we use an inverse cumulative normal

probability calculator to find u∗, we first need to rewrite the

distribution in (6) in a standard normal distribution form as

follows.

N(µ, σ2) = Φ(
u∗ − µ

σ
) =

Up

Op + Up

= 0.7

Here, µ = 49.3, σ = 11.42. After using an inverse cumu-

lative normal probability calculator in [2], we get u∗ = 55.

The value u∗ tells us that we should install 55 edge resources

to satisfy the demand of taxis (end-users) so that the expected

total cost of over-deployment and under-deployment can be

minimized.

In this dataset, we found a normal distribution that fits the

data points well. If a continuous distribution cannot be found,

the method here is still valid. We can treat probabilities as

discrete values and apply summation instead of integral. If we

try this in this example, the value of u∗ is 54, which is very

close to that obtained using the normal distribution.

Thus far, we have completed the procedure to find the

number of resources in one AoI. For other AoIs, the same

approach can be applied.

VI. CONCLUSION

In this paper, we have discussed the problems faced by Edge

Infrastructure Providers (EIPs) rather than those managed by

Edge Service Providers (ESPs), as is the case in most research

papers on MEC. More specifically, we have gone back to

the very beginning of building an MEC by asking: where to

install edge resources and how many resources to install based

on user movement and demand. To answer these questions,

we have adopted the Hierarchical Agglomerative Clustering

and Elbow methods for the first question and formulated an

optimization problem to minimize the expected cost of over-

deployment and under-deployment for the second question. To

test the feasibility of our approaches, we have implemented

the solutions using a real trace dataset of taxi cabs in San

Francisco as an example. We hope the implementation can give

some guidance to the EIPs to build a good edge infrastructure

in the first place, so that the ESPs can further improve end-

user service experience on a solid physical foundation. MEC

architecture has not yet matured sufficiently. In the future, we

will discuss more issues and explore solutions in MEC.

REFERENCES

[1] Cluster analysis. https://en.wikipedia.org/wiki/Cluster analysis.
[2] Inverse Normal Distribution. https://onlinestatbook.com/2/calculators/

inverse normal dist.html.
[3] S. Abdelwahab, B. Hamdaoui, M. Guizani, and T. Znati. Replisom:

Disciplined tiny memory replication for massive IoT devices in LTE
edge cloud. IEEE Internet of Things Journal, 3:327–338, 2016.

[4] M. T. Beck, S. Feld, A. Fichtner, C. Linnhoff-Popien, and T. Schimper.
Me-volte: Network functions for energy-efficient video transcoding
at the mobile edge. In Proc. of 18th International Conference on
Intelligence in Next Generation Networks (ICIN), pages 38–44, 2015.

[5] N. Chen, S. Zhang, J. Wu, Z. Qian, and S. Lu. Learning Scheduling
Bursty Requests in Mobile Edge Computing Using DeepLoad. Elsevier
Computer Networks, 184:33–53, 2021.

[6] X. Chen, L. Jiao, W. Li, and X. Fu. Efficient multi-user computation
offloading for mobile-edge cloud computing. IEEE/ACM Transactions
on Networking, 24:2795–2808, 2016.

[7] A. E.-H. G. El-Barbary, L. A. A. El-Sayed, H. H. Aly, and M. N.
El-Derini. A cloudlet architecture using mobile devices. In Proc.
of IEEE/ACS 12th International Conference of Computer Systems and
Applications (AICCSA), pages 1–8, 2015.

[8] Y. Jararweh et al. SDMEC: Software defined system for mobile edge
computing. In IEEE International Conference on Cloud Engineering
Workshop (IC2EW), pages 88–93, 2016.

[9] S. Gopalakrishnan and N. Bourbakis. Curve Fitting Methods: A Survey.
The International Journal of Monitoring and Surveillance Technologies
Research (IJMSTR), 4:33–53, 2016.

[10] Z. Han, H. Tan, G. Chen, R. Wang, Y. Chen, and F. C. M. Lau.
Dynamic virtual machine management via approximate markov decision
process. In Proc. of IEEE International Conference on Computer
Communications (INFOCOM), 2016.

[11] N. Kumar, S. Zeadally, and J. J. P. C. Rodrigues. Vehicular delaytolerant
networks for smart grid data management using mobile edge computing.
IEEE Communications Magazine, 54:60–66, 2016.

[12] X. Ma, Y. Zhao, L. Zhang, H. Wang, and L. Peng. When mobile
terminals meet the cloud: Computation offloading as the bridge. IEEE
Network, 27:28–33, 2013.

[13] Z. Ma, S. Zhang, Z. Chen, T. Han, Z. Qian, M. Xiao, N. Chen, J. Wu, and
S. Lu. Towards revenue-driven multi-user online task offloading in edge
computing. IEEE Transactions on Parallel and Distributed Systems,
33(5):1185–1198, 2022.

[14] O. Maimon and L. Rokach. Clustering methods. In Data Mining and
Knowledge Discovery Handbook, pages 321–352. Springer, 2005.

[15] Michal Piorkowski, Natasa Sarafijanovic-Djukic, and Matthias Gross-
glauser. CRAWDAD dataset epfl/mobility (v. 2009-02-24). Down-
loaded from https://crawdad.org/epfl/mobility/20090224/cab, February
2009. traceset: cab.

[16] S. Sardellitti, G. Scutari, and S. Barbarossa. Joint optimization of
radio and computational resources for multicell mobile-edge computing.
IEEE Transactions on Signal and Information Processing over Networks,
1:89–103, 2015.

[17] R. L. Thorndike. Who Belongs in the Family? Psychometrika, 18:267–
276, December 1953.

[18] D. Xu and Y. Tian. A Comprehensive Survey of Clustering Algorithms.
Annals of Data Science, 2:165–193, 2015.

