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1.1 Introduction
In recent years, opportunistic networks have emerged as a mechanism for
infrastructure-free communications in wireless networks. An opportunistic network
is a sparse dynamic wireless network where mobile nodes work in ad hoc mode and
can communicate with each other only when they move into their communication
range [8]. The communication in opportunistic networks is disruption-tolerant, and
there is no need of establishing end-to-end message routing paths. Since opportunis-
tic networks allow people to communicate without network infrastructure, they are
widely used in wildlife tracking sensor networks, vehicular ad hoc networks, pocket
switched networks, and mobile social networks.

Information dissemination addresses the issue of sending a piece of information
from a source node to one or more destination(s), which is a key function of commu-
nication in opportunistic networks. Since mobile devices can exchange information
only when humans come into contact, such networks are tightly coupled with human
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social networks [24]. Therefore, information dissemination in opportunistic networks
can exploit social features such as users’ social profiles, social relationships and net-
work structures to build more efficient dissemination schemes.

In this chapter, we introduce two types of information dissemination in social-
featured opportunistic networks: unicast and multicast.

Unicast enables one-to-one communication in opportunistic networks, where one
mobile node sends information to another node. Based on characterizing users’ so-
cial interactions and mobility patterns, we propose a Social- and Mobile-Aware mes-
sage RouTing strategy called SMART. It exploits a distributed community partition-
ing algorithm to divide an opportunistic network into smaller communities based
on user movements and interaction routines. Then according to the positions of
the destination nodes, it either performs the intra-community communication or
the inter-community communication process to disseminate information. For intra-
community communications, a decayed routing utility combining social similarity
and social centrality is calculated, which is used to decide relay nodes efficiently in-
side the community. To enable efficient inter-community communications, it chooses
the fringe nodes that travel remotely as relays, and the community-degree utilities are
calculated for routing decision across communities. The efficiency of SMART is e-
valuated by extensive trace-driven experiments which illustrate that it outperforms
other unicast strategies in various opportunistic network traces.

Multicast enables one-to-many communication where one mobile node send-
s information to a set of destinations. We introduce the concept of dynamic social
features and its enhancement to capture nodes’ dynamic contact behavior and so-
cial relationships. Based on the derived dynamic social features and the community
structure, we adopt the compare-split scheme to select the best relay node for each
destination in each hop to construct a multicast tree. Specifically, we propose two
Community and Social feature-based multicast algorithms named Multi-CSDO that
involves Destination nodes Only in community detection and Multi-CSDR that in-
volves both the Destination nodes and the Relay candidates in community detection
in case the relay candidates are also socially similar. The performance of the algo-
rithms is evaluated by simulations with a real trace of an mobile social network,
which shows that the proposed multicast algorithms outperform the existing ones in
terms of delivery rate, latency, and number of forwardings.

The rest of the chapter is organized as follows. Section 1.2 presents the modeling
of opportunistic network as a social graph. Section 1.3 introduces the definitions of
social features and social properties. Section 1.4 proposes the information dissemi-
nation strategies for unicast. Section 1.5 proposes the information dissemination s-
trategies for multicast in opportunistic networks. The chapter is concluded in section
1.6.

1.2 Model
We model an opportunistic network as a social graph G =< V,E > , which is illus-
trated in Fig. 1.1. In the graph, V is a set of nodes representing mobile users. Each
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Figure 1.1: The social graph of an opportunistic network.

user has a set of personal information forming his social profile. The encounter event
is defined as the event that two nodes enter the communication range of each other. If
a node encountered another node in the past, there is a link between them indicating
their social relationship. E is the set of links/edges in the graph.

The following glossary is used to describe the social properties of social-featured
opportunistic networks.

Social ties: represent the social interaction between two nodes, which is quanti-
fied by the frequency of their encounters.

Neighbors: represent the set of nodes that have direct contact to a user in the
network.

Communities: represent the clustering structure of the social network. Nodes
within the same community are closely connected to each other either by direct link-
age or intermediates.

Social features of opportunistic network is defined in the next section.

1.3 Social features
Since information diffusion in opportunistic networks is based on the contacts of
mobile devices carried by human individuals, the speed and range of diffusion are
dependent upon the frequency and the patterns of intercontacts of individuals, which
are affected by the social features of individuals. In this section, we introduce the
representation of social features in opportunistic networks. Specifically, we explore
two types of social features: social profiles and social network structures.

1.3.1 Social Profiles
Social profiles are the properties associated with individuals in the social life. For
example, node (an individual) i may be a female working as a faculty member in a
university in USA, while node j may be a male working as a manager in a company in
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China. The two nodes have different gender, profession, affliction and and locations
that form their social profiles. According to the study of [26, 27], people come in
contact more frequently if they have more social profile features in common.

We use a vector Ei =< Ei1,Ei2, · · · ,Eim > to indicate the social profiles of node
i, where Ei1, Ei2, · · · can refer to the information of nationality, city, language, gen-
der, profession, affliction, etc. Each social feature Eik can take multiple values. For
example, a social feature Eik can be Language and its values can be English, Spanish,
and so on. The social profile of a person is time variant. For example, the age and
location of a person will change over time. Thus we use Eik(τ) to indicate the value
of the kth social feature of node i at time τ . We introduce the social profile similarity
to represent the similarity of two individuals regarding their social profiles.

Definition 1.1 Social profile similarity Assume Ei(τ)=<Ei1(τ),Ei2(τ), · · · ,Eim(τ)>
and E j(τ) =< E j1(τ),E j2(τ), · · · ,E jk(τ) > are the social profiles of node i and j at
time τ , the social profile similarity of the two nodes are defined as

Si, j(τ) = dist(Ei(τ),E j(τ)), (1.1)

where dist(X ,Y ) are the distance measurement of the two vectors.

Based on the definition, the social profile similarity can be measured by the dis-
tance of two vectors. There are a variety of distance measurements such as Euclidean
distance, Mahalanobis distance, etc., which can be used to quantify the social profile
similarity.

Another metric to evaluate the closeness of two nodes is social neighbor similar-
ity, which is defined as the number of neighbors they shared.

Definition 1.2 Social structure similarity Assume Fi(τ) and F j(τ) are the sets
of neighbors of nodes ni and n j at time τ accordingly, the social neighbor similarity
of the two nodes is defined as

Si, j(τ) = |Fi(τ)∩F j(τ)|. (1.2)

Social neighbor similarity infers the reachability of two nodes for information
dissemination in opportunistic networks. The higher the social neighbor similarity of
two nodes is, the more likely they can communicate with each other via the common
neighbors.

1.3.2 Social network structures
Social network structure represents the position of a node in the social network and
how the nodes connect with each other in the network. We use centrality and com-
munity to specify such social features.

Social centrality refers to the position and the relative importance of a node in the
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social network structure. There are various definitions of centrality which includes
degree centrality [11] and betweenness centrality [10].

Definition 1.3 Degree Centrality Degree centrality is simply defined as the pro-
portion of the number of links incident upon a node. Assume G =<V,E > is a social
graph; dik is an indicator to represent the existence of a link between two nodes,
where dik(τ) = 1 if there exists a link between node i and node k at time τ , and
dik(τ) = 1 otherwise. The degree centrality of node i at time τ is calculated by

Ci(τ) =
∑

∀k∈V dik(τ)∑
∀ j∈V

∑
∀k∈V d jk(τ)

, (1.3)

where
∑

∀ j∈V
∑

∀k∈V d jk(τ) is the total number of links in the social network.

Definition 1.4 Betweenness Centrality Betweenness centrality measures the im-
portance of a node that acts as a bridge along the shortest path between two other
nodes in the social graph. For a social graph G =< V,E >, assume at time τ , the
set of nodes on the shortest path from node s to node t is indicated by Vs→t . The
betweenness centrality of node i at time τ is calculated by

Ci(τ) =
∑

∀s∈V &s ̸=i
∑

∀t∈V &t ̸=i |{i}∩Vs→t |
(n−1)(n−2)/2

, (1.4)

where the upper part calculates the total times that node i lies on the shortest path
from s to t, and the lower part is the total number of source-destination pairs in the
social graph.

In the context of information diffusion in social networks, the degree centrality
and betweenness centrality can be interpreted in terms of the ability of a node for
holding information flowing through the network.

The community structure refers to the property that nodes of the network forming
subgroups with which vertex-vertex connections are dense, but between which con-
nections are less dense [12]. According to [21], the community structure of a social
network can be defined as follows.

Definition 1.5 Community A community is a local densely connected subgraph
in a network. For a subgraph G′ =<V ′,E ′ > of a social graph G =<V,E >, assume
din

i is the number of connections from node i to the other nodes in V ′, and dout
i is the

number of connections from i to the nodes in V −V ′. G′ is a community of G if it
satisfies ∑

i∈V ′

din
i >

∑
i∈V ′

dout
i , (1.5)

i.e., the total number of internal connections in G′ should be larger than the total
number of external connections to the rest of the network.
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Community detection algorithms have been well studied in the past. Typical ap-
proaches include the min-cut technique [6] that partitions a connected graph into sub-
graphs recursively, the Girvan-Newman algorithm [12] that removes the edges with
the highest edge betweenness gradually, and the label propagation algorithm [20] that
provides a near-linear time solution for community detection in large-scale networks.

1.4 Unicast
Unicast refers to one-to-one communication in a network. When a piece of informa-
tion is sent by a source node, a unique destination address is specified. Unicast in
opportunistic networks employs the “store-carry-forward” manner: when informa-
tion is sent by a source node, it traverses several intermediate nodes which store and
carry data while moving and forward the data to the next relay node upon encounter-
ing, until eventually the destination is reached.

To achieve unicast information delivery in opportunistic networks based on user
contacts, we propose a Social- and Mobile-Aware message RouTing strategy called
SMART. The basic idea of SMART is to exploit community structure in opportunis-
tic networks and choose relay nodes to route data adaptively according to social
features and mobility characteristics. The SMART scheme first applies a distributed
community partitioning algorithm to divide mobile nodes into communities, and then
based on the positions of the destination nodes, it either performs an intra-community
communication or an inter-community communication process to disseminate infor-
mation. The details are presented as follows.

1.4.1 Distributed Community Partitioning
In opportunistic networks, communities are formed based on the locations and move-
ment trajectories of users. Intuitively, people staying in closer geographic areas or
sharing similar location interests tend to meet each other more often [9, 16, 17]. Ac-
cording to the observation in [28], about 80% of trajectory coordinates of a user
appear within 5km from its centroid (or known as geographic mass point), and the
encountering probability of two nodes is high only when their mass points are close
enough. Inspired by the previous observation, we propose a dynamic and distributed
community partitioning algorithm called m-partition to detect the clusters of fre-
quently encountering nodes.

Given the number of community m, the community partitioning process contains
two stages: the bootstrap stage and the evolution stage. In the bootstrap stage, m
nodes are randomly selected and each node is assigned with a unique community ID.
A node without community affiliation will be assigned the ID of the node with know
community it first encountered. After this stage, each node has an initial community
ID. In the evolution stage, each node keeps counting the affiliation parameters (APs),
which indicate the number of encounters with nodes in different communities. Then
it adjusts its community affiliation according to the updated AP values. Specifically,
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Algorithm: m-partition

Require: Node Ni and AP vector;
Ensure: The community ID of node Ni;

1: Assume there are m communities to be detected;
2: for Each encounter event (with N j) do
3: if Ni.communityID = null then
4: Ni.communityID = N j.communityID
5: else
6: y← N j.communityID
7: x← Ni.communityID
8: if y = x then
9: apxi = apxi +1

10: else
11: apyi = apyi +1;
12: end if
13: if apyi > apxi then
14: Ni.communityID = y
15: end if
16: end if
17: end for

Figure 1.2: The m-partition algorithm.

we use a vector to depict the affiliation parameters of node ni:

Ei = {ap1i ,ap2i , · · · ,apmi},

where ap ji is the AP of ni connecting to community C j, which denotes the number
of encounters between ni and nodes in C j. The AP vector is updated each time an
encounter occurs, and the node adaptively changes its community affiliation to the
community with the maximal AP value in the vector. The detailed process of the
algorithm is illustrated in Fig. 1.2.

The algorithm is run in a distributed way, and each node keeps recording the
community affiliations of other nodes it encounters. Since community is formed by a
group of frequently encountering nodes, the community members will be known to
each other after running the algorithm long enough.

After dividing mobile users into communities, we consider two cases of unicast:
the intra-community communication where the source and destination are in the same
community, and the inter-community communication where the source and destina-
tion are in different communities. The principles of information dissemination for
the two cases are discussed in the following sections.
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1.4.2 Intra-Community Communication
In the social graph of an opportunistic network, the links between nodes indicate the
encountering events of the nodes in the past. If a source node ns and a destination
node nd are in the same community, they will encounter each other or other nodes
in the same community more often, thus the structure of the social graph can be
exploited to form a routing path between ns and nd . Intuitively, we can choose relay
nodes based on social features such as centrality and similarity. On one hand, if a
node has more links to the other nodes, it is more likely to encounter the destination,
so social centrality is a good indicator of the ability to serve as a hub for information
exchange. On the other hand, if a node has more common friends with the destination
node, it will have higher probability to reach the destination directly or indirectly
(via a common friend), thus social neighbor similarity can also be used as a metric to
choose relay nodes. In this section, we will combine the two metrics to form a utility
function for routing decision.

According to section 1.3.2, social centrality can be represented by the degree
centrality of a node. However, to multigate the accumulative effect that a node may
encounter many other nodes in the history but become less active in the recent, we
introduce a decayed degree centrality of node i to overcome accumulative effect of
historical encounter events, which is calculated by

C′
i (τ) =

Ci(t)
τ− t

, (1.6)

where τ is the current time and t is the most recent time that node i encounters another
node. According to the equation, C′

i (τ) is a decay function of Ci(t).
Social neighbor similarity is given by equation (1.2). We calculate the decayed

social neighbor similarity as

S′
i, j(τ) =

Si, j(t)
τ− t

, (1.7)

where τ is the current time and t is the most recent time that node i encounters j or
j’s friends.

Since social centrality and social structure similarity describe different aspects of
social features of a mobile node, there need to be a way to combine the two different
metrics to form a utility function. Inspired by the concept of convolution in signal
processing, which provides a mathematical operation on two functions to produce
the weighted average over time, the utility function at time T is formulated as

Yi,d(T ) = S′
i,d(T )⊗C′

i (T ) =
∫ T

τ=0
S′

i,d(τ)∗C′
i (T − τ). (1.8)

In the real implementation, time is divided into slots, and the utility can be calcu-
lated in a discrete way and can be updated whenever an encountering event occurs:

Ui,d(T ) =
T∑

τ=0

Xi,d(τ)∗S′
i,d(τ)∗C′

i (T − τ), (1.9)
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where Xi,d(τ) = 1 when an encounter occurs at time τ; otherwise, X(τ)id = 0.
The utility function describes that when each encounter occurs, it yields an ad-

dictive effect represented by social structure similarity and social centrality decaying
over time. According to the utility function, a node with higher degree and more
common friends with the destination decays slower than a node with poor connec-
tion to the network, and a node with more recent encounters decays slower than a
less active one.

With the derived utility function, we propose the routing principle for intra-
community communication.

Intra-community forwarding principle: In opportunistic networks, if a source n-
ode sends a message to a destination within the same community, whenever an inter-
mittent node ni is encountered, utility function in Eq. (1.9) is applied, and message
is forwarded to the node with higher utility until the destination is reached.

1.4.3 Inter-Community Communication
If the destination node nd does not belong to the same community as the source node
ns, we need to choose some relay nodes to forward the message across communities.
The idea is to use “fringe nodes” to bridge the communication of inter-communities.

Table 1.1: Remote contact table of node ni

X1 X2 · · · Xk · · · XM
ηi1 ηi2 · · · 0 · · · ηiM

A fringe node is a node which is capable of remote contact with other commu-
nities. It is measured by the number of links that it connects to other communities.
We select nodes with higher number of links to outside communities as fringe nodes.
Each fringe node is represented by its ID and its remote contact table is shown in
Table 1.1, where Xk (k = 1, · · · ,M) is the community ID, and ηik (k = 1, · · · ,M) is
the frequency that ni encounters nodes in Xk.

Each community maintains a set of fringe nodes F . The set F is calculated and
updated periodically. During a period, each node compares the contact frequencies
in its remote contact table with those of the fringe nodes in F . If a node ni finds
that it has better connection with outside communities than a fringe node n j, it will
announce itself as a new fringe node by broadcasting its ID and remote contact table
to the community. The process is described below.

Assume ηi1, ηi2, · · · , ηiM are the remote contact frequencies of ni, and η j1, η j2,
· · · , η jM are the remote contact frequencies of n j. Define a function ϕ(x,y) = 1 if
x≥ y; and otherwise ϕ(x,y) =−1. The relative ability for remote contact of the two
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nodes is evaluated by

Fi, j =
M∑

k=1

ϕ(ηik,η jk).

If Fi, j is larger than 1, it means ni has better remote connection than n j, thus ni will
announce itself as a fringe node for the community.

According to the report in [25], a small fraction of the remote links are enough
to form a small world network with a small network diameter. In our network, we set
the number of fringe nodes as 10% of the community size. If the community size is
smaller than 10, the number of fringe nodes is set as 1.

Inter-community forwarding principle: For inter-community communication, a
source node ns in community C sends a message to the destination nd in communi-
ty C′, where C ̸= C′. With the set of fringe nodes derived, it applies the following
principles to forward the message from C to C′.

(1) If C and C′ are directly connected, i.e., there exists a non-empty set C =
{n j|∀ n j ∈ F and n j connects to C′}, the principle is to choose the fringe node with
the maximum connection to C′ as relay. That is, the message will be forwarded to the
fringe node with higher degree centrality to C′.

(2) If C and C′ are not directly connected, the message will be forwarded across
multiple communities. Similar to the definition of the degree centrality, we define the
community-degree centrality as follows.

Di =

∑M
k=1 ηik∑

∀ j∈F
∑M

k=1 η jk
. (1.10)

A higher Di value indicates more connections from ni to the outside communi-
ties. Thus the principle for cross community communication is to forward the mes-
sage to the fringe node with a higher community-degree centrality. The message will
be forwarded in multiple hops, until it reaches the destination community. After that,
intra-community forwarding principle will be applied to keep forwarding the mes-
sage to the destination eventually.

1.4.4 Performance Evaluation
1.4.4.1 Datasets

Our study is based on three publicly available opportunistic network traces: MIT
Reality [7], DieselNet [3] and Cabspotting [19]. The MIT Realitydata set consists of
the location traces of 97 users with Nokia 6600 smart phones at MIT during the 2004-
2005 academic year. DieselNet logs mobility traces of 34 buses in Amherst. Each bus
is equipped with a computer and a GPS. It records the GPS locations of all the buses
during the 20 days from October to November in 2007. Cabspotting is a mobility
trace of taxi cabs in San Francisco. Each taxi is outfitted with a GPS tracking device.
It contains GPS coordinates of 536 taxis collected over 30 days in San Francisco Bay
Area. The statistics of the three data sets are summarized in TABLE 1.2.
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Table 1.2: Statistics of the data sets
Traces MIT Reality DieselNet Cabspotting

Network type Bluetooth 802.11b none
No. devices 97 34 536
No. contacts 54,667 2,284 111,153

Duration (days) 246 20 30

1.4.4.2 Experiment Setup

We launch the experiment on the HaggleSim simulator [13]. It takes the discrete se-
quential encounter events and the corresponding social graph as the inputs and makes
data forwarding decisions using various routing algorithms. For each experiment, we
emulate 1000 messages with one-week lifetime sent from a random selected source
to destination. We run every experiment 20 times for statistical convergence. The
following performance metrics are used to evaluate the performance of the routing
algorithms.

� Delivery ratio: the ratio of the number of destinations having received the
data to the total number of destinations.

� Average delay: the average time delay for each data item delivered from the
source to the destination.

� Average cost: the average number of relays used for data delivery from the
source to the destination.

We extract a 2-week session from MIT Reality, DieselNet and Cabspotting re-
spectively and run the simulator over the selected sessions with uniformly generated
traffic. The SMART algorithm is implemented and is compared to other existing
routing algorithms.

1.4.4.3 Impact of community numbers

We first investigate the impact of the number of communities on the performance of
SMART. We apply the proposed m-partition algorithm for community partitioning
on the three mobility traces and then use SMART to route messages.

Fig. 1.3 shows the performance metrics as a function of community number m
(varying from 1 to the size of the data sets) and time on MIT Reality trace. The deliv-
ery ratio of MIT Reality trace is shown in Fig. 1.3(a). According to this figure, when
no community partitioning algorithm is applied (m = 1), the delivery ratio is quite
low and increases slowly with time. As the community number is set to an appropri-
ate value (e.g. m = 10), the delivery ratio increases dramatically, which is almost 2
times as much as that when m = 1. For 10≤ m≤ 90, the delivery ratio becomes sta-
ble and has only small fluctuation. When the community number approaches to the
size of the data set (m = 97), the performance drops dramatically since the impact of
the community structure disappears. The average delay is illustrated in Fig. 1.3(b). It
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Figure 1.3: The performance metrics as a function of community number and time
(MIT Reality).

is seen that the average delay is almost the same for all community numbers and it
only varies with time. The average cost is shown in 1.3(c). Similar to delivery ratio,
the average cost is influenced by m and increases to a stable value when 10≤m≤ 90.
Similar results are also found in DieselNet and Cabspotting. The results suggest that
SMART performs better when the community structure is outlined, while the perfor-
mance of SMART is low when no community structure is indicated in the network.
It also reveals that the proper value of m is within a wide range. In the rest of our
experiments, we fix our community number to m = 10.

1.4.4.4 Impact of community partitioning algorithms

We show the impact of community partitioning algorithms on the SMART routing
scheme in this group of experiments. We evaluate the performance of SMART using
different community partitioning algorithms, including m-partition, k-clique perco-
lation algorithm [18] (which considers the adjacent k-cliques as communities), and
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Figure 1.4: The performance of SMART under different community partitioning
algorithms (MIT Reality).

Girvan-Newman algorithm [12] (which continues removing edges with the highest
betweenness until a certain threshold is reached).

Fig. 1.4 presents experimental results of the MIT Reality trace. As shown in
Fig. 1.4(a), the m-partition method outperforms Girvan Newman by 10% and k-
clique percolation by 2% in delivery ratio. In terms of average delay, as shown in
Fig. 1.4(b), m-partition performs slightly better than the other two algorithms. The
three algorithms produce similar average costs as shown in Fig. 1.4(c). Similar results
are also observed in DieselNet and cabspotting data traces.

Despite the different algorithms used for community partitioning, the routing per-
formance is quite similar for all three datasets. It indicates that the proposed SMART
routing mechanism is not sensitive to community partition. Since Girvan Newman
and k-clique percolation need global network topology information which is diffi-
cult to obtain in opportunistic networks, the proposed m-partition algorithm is more
suitable for distributed implementation in the real world.
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Figure 1.5: The performance comparison of various strategies on MIT Reality Min-
ing trace

1.4.4.5 Performance comparison

We compare SMART with five existing routing strategies for opportunistic networks:
PROPHET [15], SimBet [4], Bubble Rap [14], Friendship Based Routing (FBR) [2],
and Epidemic routing [23]. PROPHET is a utility-based strategy according to en-
counter history. It forwards data to the nodes with higher delivery rate based on
contact history. SimBet is a utility-based strategy according to social features. It
considers social properties including similarity and centrality to make data forward-
ing decisions. Bubble Rap is a community-based strategy. It depends on community
structure and routes data based on rankings calculated from social centrality. FBR
algorithm is another community-based algorithm. It constructs temporal communi-
ty and uses the nodes with direct connection to the destination community for data
delivery. Epidemic routing is a flooding strategy. It has high delivery cost, but its de-
livery ratio and delay approach the theoretical bounds. To show the amount of traffic
in the routing algorithms, we add control overhead as an additional metric to evaluate
different routing strategies.
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Fig. 1.5 shows the performance of various algorithms as a function of time on
MIT Reality trace. The delivery ratio is compared in Fig. 1.5(a). It shows that S-
MART outperforms PROPHET, SimBet, FBR and Bubble Rap. The delivery ratio of
SMART is about 10% higher compared to those of Bubble Rap and FBR, 15% high-
er than that of SimBet and nearly 20% higher than that of PROPHET. The reason
that PROPHET performs the worst is due to the reason that it fails to adapt to the
community structure of the mobility trace. SimBet exploits social properties to en-
hance the delivery ratio but it can not adapt to the decaying effect of social features.
Bubble Rap and FBR take advantages of the community structure, so they perform
better than PROPHET, but not as well as SMART. Since Epidemic routing represents
the theoretical upper bound of the delivery ratio, the performance of SMART is be-
low that of the Epidemic routing. Average delay is compared in Fig. 1.5(b). Again,
the delay of SMART is lower than the other four strategies (most of the time their
performance is very close), but higher than the lower bound (Epidemic routing). The
average cost is compared in Fig. 1.5(c). The cost of PROPHET is the highest. The
cost of SMART is slightly higher than those of the others due to the decaying effec-
t, which makes SMART take more relays for data delivery. The comparison of the
control overhead on MIT Reality data trace is shown in Fig. 1.5(d). The overhead
of SMART is around 20 KB at the end of the experimental period, which is mainly
caused by the exchange of the friend list. PROPHET has over 10% higher overhead
than SMART since it needs to exchange transitivity information. FBR takes 4 times
more control overhead than SMART because it requires the encounter information
from the neighbors.

Fig. 1.6 presents the performance results of various algorithms as a function of
time on DieselNet dataset. The delivery ratio is depicted in Fig. 1.6(a). SMART out-
performs Bubble Rap by 3%, FBR by 5% and PROPHET by 8%. It has nearly 20%
higher delivery ratio than SimBet. Regarding the average delay and the average cost
of each strategy shown in Fig. 1.6(b) and Fig. 1.6(c), SMART has very close aver-
age delay to Epidemic, which is less than those in the other strategies. The average
cost of SMART is about 50% of that of PROPHET and higher than those of FBR
and SimBet. DieselNet has very similar network structure with MIT Reality and thus
has similar trend on delivery ratio with MIT Reality. However, due to the regular
and repetition routine of buses in DieselNet, it makes the SimBet meet dead ends
quite often and takes more time to wait until reaching the destinations. Therefore, it
has lower delivery ratio and higher average cost. Since DieselNet has tighter cluster-
ing structure, it makes Bubble Rap and FBR perform close to SMART. SMART has
similar cost with social-related strategies but much lower cost than PROPHET. The
overhead is presented in Fig. 1.6(d). The overhead of SMART is the lowest, which
is 4KB at the end of the experimental period. PROPHET has 25% higher overhead
than SMART and the overhead of FBR is 2.5 times of that of SMART.

The comparison of the different different algorithms’ performance on Cabspot-
ting trace is shown in Fig. 1.7. Fig. 1.7(a) depicts the delivery ratio of the various al-
gorithms as a function of time. The SMART algorithm has very similar performance
as PROPHET. It outperforms FBR by 5%. The Bubble Rap algorithm is affected by
weak community structure, which lowers down its delivery ratio around 10% com-
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Figure 1.6: The performance comparison of various strategies on DieselNet trace

pared to SMART. SimBet has the lowest delivery ratio, which is much lower than
other strategies. In terms of the average delay shown in Fig. 1.7(b), the delay of S-
MART is as low as that of Epidemic and is much lower than those of others. The
average costs of various algorithms are similar as shown in Fig. 1.7(c). The overhead
is shown in Fig. 1.7(d). The overhead of SMART is around 20 KB at the end of the
experimental period, while the overhead of FBR and PROPHET is much higher than
that of SMART.

In summary, the proposed SMART strategy outperforms the utility-based and
community-based strategies on various opportunistic network datasets in most of the
performance metrics.

1.5 Multicast
Multicast refers to one-to-many communication in a network. The sender may spec-
ify a group of destination addresses for a single piece of information. For multicast
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Figure 1.7: The performance comparison of various strategies on Cabspotting trace

in opportunistic networks, it also applies the “store-carry-forward” approach to relay
information among mobile nodes. Different from unicast, when a node encounters
another node, it decides whether to create a new copy of the data, or simply hands
over the data to the other nodes. In multicast, more and more copies of the origi-
nal information are created and propagated in the network, until all the destinations
receive a copy of the original information.

In multicast, a message holder is expected to forward a message to multiple des-
tinations. To reduce the overhead and forwarding cost, the destinations will share the
routing path until the point that they have to be separated, which usually results in
a tree structure. The basic idea of our scheme is to improve multicast efficiency by
exploring node social features and community structure. We first introduce the defi-
nition of dynamic social features, which represents the dynamic social characteristics
of mobile users regarding their social profiles and encountering behaviors. And then
we present enhanced dynamic social features, an improved version of dynamic social
features. Based on the enhanced dynamic social features, we apply the compare-split
scheme using community detection to form a multicast tree. Specifically, we propose
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two Community and Social feature-based multicast algorithms named Multi-CSDO
that involves Destination nodes Only in community detection and Multi-CSDR that
involves both the Destination nodes and the Relay candidates in community detec-
tion in case the relay candidates are also socially similar. The details are presented as
follows.

1.5.1 Dynamic social features
Suppose the social profile of a mobile user is represented by m social features
⟨E1,E2, · · · ,Em⟩. The social profile similarity can be calculated using equation (1.1).
However, such social features are static and cannot represent the encountering be-
havior of mobile users. In this section, we introduce the dynamic social features and
enhanced dynamic social features to incorporate the behavior dynamics.

Definition 1.6 Dynamic social features Assume a mobile node x has social pro-
files Ex(τ) =< Ex1(τ),Ex2(τ), · · · ,Exm(τ)>, its dynamic social features can be rep-
resented by a vector Ẽx(τ)=< Ẽx1(τ), Ẽx2(τ), · · · , Ẽxm(τ)>, where Ẽxk (0≤ Ẽxk ≤ 1)
is the ratio of node x encountering other nodes having the same social profile Exk,
which is computed by

Ẽxk(τ) =
Mk(τ)

Mtotal(τ)
. (1.11)

Here, Mk(τ) is the number of meetings of node x with other nodes having social
feature value Exk, and Mtotal(τ) is the total number of nodes x has met in the duration
τ .

Dynamic social features not only record if a node has certain social feature val-
ues, but also record the frequency this node has met other nodes with the same social
feature values. Unlike the static ones, they are time-related and adjusted to the user
contact behavior change over time.

The definition of dynamic social features is based on frequency, which cannot
distinguish the cases, for example, if A has met 1 Student out of 2 people it has met
in total and B has met 5 Students out of 10 people it has met in total in the history
we observe. Both of them have the same frequency of 1/2 to meet a Student, but B is
more active in meeting people. To break the tie and favor the more active node, there
are many formulas we can design. Here, we come up with the following enhanced
dynamic social features to serve our purposes.

Definition 1.7 Enhanced dynamic social features Following the notations in
definition 1.6, the enhanced dynamic social features of mobile node x are defined as
Êx(τ) =< Êx1(τ), Êx2(τ), · · · , Êxm(τ)>, where

Êxk(τ) = (
Mk(τ)+1

Mtotal(τ)+1
)pk ∗ ( Mk(τ)

Mtotal(τ)+1
)1−pk , (1.12)
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where pk =
Mk(τ)

Mtotal(τ)
.

This definition predicts Êxk by looking at the next meeting probability of node
x with another node having the same social feature value. In the next time, the total
meeting times will be Mtotal(τ) + 1. The first part ( Mk(τ)+1

Mtotal(τ)+1 )
pk means that there

will be pk probability that x will have a “good” meeting with another node having
the same social feature value next time. In this case, Mk will also be incremented by
1. The second part ( Mk(τ)

Mtotal(τ)+1 )
1−pk means that there will be 1− pk probability for x

not to meet a node with the same social feature value next time. In that case, Mk will
remain the same. The definition for Êxk then takes the geometric mean of the two
parts.

With the above definitions, the social similarity of two nodes x and y regarding
their enhanced dynamic social features is defined as follows.

Definition 1.8 Enhanced social similarity Following the notations in definition
1.7, the enhanced social similarity of node x and y is computed by their Euclidean
distance subtracting from 1:

Sx,y(τ) = 1−

√∑m
k=1(Êyk(τ)− Êxk(τ))2

√
m

. (1.13)

Based on the enhanced dynamic social features and similarity measurement, we
proposed two multicast algorithms in the following subsections.

1.5.2 The Multi-CSDO algorithm
The first proposed multicast algorithm is called Multi-CSDO as shown in Fig. 1.8.
Its basic idea is as follows: First, a source node s has a destination set to multicast
a message to and s is the initial message holder or relay node x. When x meets a
node y, if y is one of the destinations, y gets the message and is removed from the
destination set. Next we use a compare-split scheme to make a decision of whether
it is better to pass some destinations to y. Both x and y are called relay candidates in
the decision. To separate the destinations into x’s community or y’s community, we
use a community detection algorithm involving only the destination nodes based on
their social similarities. The community detection algorithm we use takes a distance
matrix coming from a similarity weighted graph as an input. The following are the
details.

1.5.2.1 Similarity weighted graph and distance matrix

In Multi-CSDO, as shown in an example in Fig. 1.9, when a message holder x en-
counters a node y, we construct a similarity weighted graph involving only the des-
tination nodes. The weight of the edges is the social similarity of the two connected
destination nodes calculated using static social features (denoted by dashed edges in
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Algorithm Multi-CSDO: community and social feature-based multicast involv-
ing destinations only in community detection

Require: The source node s and its destination set Ds = {d1,d2, · · · ,dn}; s is the
initial message holder x

1: while not all of the destinations receive the message do
2: On contact between a message holder x and node y:
3: if y ∈ Dx then
4: /* Found destination y */
5: y gets the message and x removes y from Dx
6: end if
7: /* Compare node social similarity and split the destinations */
8: Construct a weighted graph and a distance matrix of the destination nodes

only as explained in Section 1.5.2
9: Feed the distance matrix to the hierarchical clustering algorithm to generate

two communities C1 and C2 as explained in Section 1.5.2
10: Compare the social similarity of C1 and C2 with x and y using enhanced dy-

namic social features, respectively
11: Whichever (x or y) is more socially similar to each of the communities will be

the message carrier for that community
12: end while

Figure 1.8: The Multi-CSDO multicast algorithm.

Fig. 1.9) as their dynamic social features are not known to the relay candidates in a
distributed algorithm. With the similarity weighted graph, we can create a distance
matrix as shown in Fig. 1.10 to indicate the social difference or distance between
each pair of destinations. The social distance between two destinations di and d j
is defined as 1− S(di,d j) here. The distance matrix will be used in the following
community detection algorithm to separate the destinations into two communities.

1.5.2.2 Community detection algorithm

We use a hierarchical clustering algorithm called complete-linkage clustering [5]
to split the destinations into two communities. We choose this one because it best
matches our needs and there is an existing Python package [1] available for this
algorithm so that we do not have to reinvent the wheel.

The idea of the complete-linkage hierarchical community detection algorithm we
adopt is as follows: At the beginning of the process, each node is in a community of
its own. The communities are then sequentially combined into larger communities,
until all nodes end up being in one community. At each step, the two communities
separated by the shortest distance are combined. The distance between communities
is defined as the distance between those two nodes (one in each community) that
are farthest away from each other. We feed our distance matrix and the number of
communities 2 into the package and obtain two communities as the result.
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Figure 1.9: The similarity weighted graph and community detection involving des-
tination nodes only. Node x is a message holder and y is a newly met node. The
green nodes are the destinations. The weight of a dashed edge is the social similarity
calculated using static social features while the weight of a solid edge is the social
similarity calculated using the enhanced dynamic social features. The destinations
are split into two communities C1 and C2 based on their social similarities.
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1.5.2.3 Destinations split

After applying the community detection algorithm, the destinations are separated
into two communities C1 and C2. Next we decide which relay candidate, x or y,
should carry the destinations in which community. We compare the social similarity
of each relay candidate with each community using enhanced dynamic social features
(denoted by the solid edges in Fig. 1.9). The social similarity between a node and a
community should include all of the social feature values of the nodes involved. After
calculation, whichever is more socially similar to a community will be the relay node
for the destinations in that community.

In Multi-CSDO, x and y are supposed to be in different communities, which may
not be true if they are socially similar. Thus, in the next section, we introduce the
Multi-CSDR algorithm by incorporating both x and y in the community detection
and make our decision more accurate by considering more node relationships.

1.5.3 The Multi-CSDR algorithm
The second multicast algorithm is called Multi-CSDR. It has a similar structure with
the first algorithm, but has several differences. As shown in the example in Fig. 1.11,
first, the community detection algorithm involves both the destination nodes and the
relay candidates x and y. Thus the similarity weighted graph adds the social simi-
larity between each relay candidate and each destination node. The social similarity
between two destination nodes is still calculated using static social features and is
denoted by a dashed edge in Fig. 1.11. However, the social similarity between a re-
lay candidate and a destination is calculated using enhanced dynamic social features
as they can be obtained and is denoted by a solid edge in Fig. 1.11. We still use the
same community detection algorithm. But the distance matrix now also includes the
distance between each relay candidate and each destination. After applying the com-
munity detection algorithm, the destinations in x’s community will be carried by x
and those in y’s will be carried by y. For other cases, for example, if x and y are in
the same community, then x will still be the carrier for the original destination set.

In this algorithm, by adding the social similarity of each relay node with each
destination using enhanced dynamic social features, we hope to improve the accuracy
of the compare-split scheme.

1.5.4 Performance Evaluation
We evaluate the performance of the proposed multicast algorithms by comparing
them with the existing ones using a simulator written in Python. The simulations
were conducted using a real conference trace [22] reflecting an opportunistic network
created at IEEE Infocom 2006 in Miami. The trace recorded conference attenders’
encounter history using Bluetooth small devices (iMotes) for four days at the con-
ference. The trace dataset consists of two parts: contacts between iMote devices that
were carried by participants and self-reported social features of the participants col-
lected using a questionnaire form. The six social features extracted from the dataset
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Figure 1.11: The similarity weighted graph and community detection involving both
destination nodes and relay candidates x and y. Node x is a message holder and y is
a newly met node. The green nodes are the destinations. The weight of a dashed
edge is the social similarity calculated using static social features while the weight
of a solid edge is the social similarity calculated using the enhanced dynamic social
features. The nodes are split into two communities based on their social similarities.

were Affiliation, City, Nationality, Language, Country, and Position. In this trace, 62
nodes with complete social feature information were considered in the simulation.

We compare our algorithm with the following existing multicast algorithms.

� The Epidemic Algorithm (Epidemic) [23] : The message is spread epidem-
ically throughout the network until it reaches all of the destinations.

� The Social-Similarity-based Multicast Algorithm (Multi-Sosim) [27]:
The multicast algorithm based on dynamic social features in our previous
work.

Three important metrics are used to evaluate the performance of the multicast
algorithms.

� Delivery rate: The ratio of the number of successful multicasts (where the
message is delivered to all the destinations) to the number of total multicasts
generated.

� Delivery latency: The time from the start of multicast to when all of the
multicast destinations have received the message.

� Number of forwardings: The number of hops needed to deliver a message
to all of the multicast destinations.

1.5.5 Simulation setup
In our simulations, we divided the whole trace time into 10 intervals. Thus, 1 time
interval is 1/10 of the total time length. For each algorithm, we tried 5 and 10 des-
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Figure 1.12: Comparison of different algorithms with 5 destinations using all devices
in the trace
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tinations. In each experiment, we randomly generated a source and its destination
set. Since the whole trace only contains four days of node contact history, the time
interval we observed to calculate the dynamic and enhanced dynamic social features
was counted from the beginning of the trace up until the time we needed to make
a routing decision. For the community detection algorithm, we adopted the Python
package available at [1] for the complete-linkage hierarchical clustering algorithm.
We ran each algorithm 300 times and averaged the results.

1.5.6 Simulation results
The simulation results comparing our algorithms with others using 5 and 10 destina-
tions are shown in Figs. 1.12 and 1.13, respectively. For the Epidemic algorithm, as
expected, it has the highest delivery rate (100%) and lowest delivery latency (almost
close to 0) but highest number of forwardings.

With both 5 and 10 destinations, Multi-CSDO and Multi-CSDR consistently out-
perform Multi-Sosim in terms of delivery rate, latency, and number of forwardings.
In the 5 destination case, Multi-CSDR and Multi-CSDO improve the delivery rate of
Multi-Sosim by as much as 9 times and 7 times, respectively, reduce the latency of
Multi-Sosim by as much as 47% and 43%, respectively, and decrease the number of
forwardings of Multi-Sosim by as much as 29% and 18%, respectively. Similarly, in
the 10 destination case, Multi-CSDR and Multi-CSDO improve the delivery rate of
Multi-Sosim by as much as 11 times and 6 times, respectively, reduce the latency of
Multi-Sosim by as much as 51% and 38%, respectively, and decrease the number of
forwardings of Multi-Sosim by as much as 40% and 28%, respectively. These tell us
that adding the social relationships among destinations in the compare-split scheme
can facilitate multicast.

Furthermore, Multi-CSDR has better delivery rate, lower latency, and lower num-
ber of forwardings than Multi-CSDO with both 5 and 10 destinations. In the 5 desti-
nation case, Multi-CSDR improves the delivery rate of Multi-CSDO by as much as
5%, reduce the latency of Multi-CSDO by as much as 11%, and decrease the number
of forwardings of Multi-CSDO by as much as 13%. Similarly, in the 10 destination
case, Multi-CSDR improves the delivery rate of Multi-CSDO by as much as 69%,
reduce the latency of Multi-CSDO by as much as 22%, and decrease the number
of forwardings of Multi-CSDO by as much as 17%. These verify that considering
the social relationship between each relay candidate and each destination, and cal-
culating their social similarity using enhanced dynamic social features can improve
multicast performance.

In summary, these results confirm that obtaining more accurate dynamic infor-
mation and using better compare-split schemes can make multicast more efficient.
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Figure 1.13: Comparison of different algorithms with 10 destinations using all de-
vices in the trace
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1.6 Conclusion
In this chapter, we studied information dissemination mechanisms in opportunistic
networks. Based on the coupling of opportunistic networks and human social net-
works, we modeled the opportunistic network as a social graph, and exploited social
features such as users’ social profiles, social relationships and network structures to
build more efficient information dissemination schemes.

Specifically, we explored the unicast and multicast information dissemination
in opportunistic networks. For one-to-one communication (unicast), we proposed a
social- and mobile-aware message routing strategy called SMART. In this strategy, an
opportunistic network is divided into a number of communities using adaptive com-
munity partitioning algorithms. Two data routing processes were introduced: intra-
community communications and inter-community communications. It was shown
that SMART adopts both community structure and social similarities to enhance da-
ta forwarding efficiency. Extensive trace-driven experiments showed that SMART
outperforms other unicast strategies in various opportunistic network traces. For one-
to-many communication, we proposed two social feature-based multicast algorithms
named Multi-CSDO and Multi-CSDR. The proposed algorithms used enhanced dy-
namic social features to capture nodes’ contact behavior, and applied a compare-split
scheme based on community detection to select the best relay node for multiple desti-
nations in each hop to improve multicast efficiency. Simulations using a real trace of
a mobile social network showed that the proposed algorithms outperform the existing
ones in various performance metrics.

Our work revealed the possibility of exploiting social features to facilitate com-
munication networks. By incorporating the social properties such as centrality, simi-
larity, and community structure into algorithm and protocol design, the efficiency of
information dissemination in mobile and wireless network achieved great improve-
ment.

1.7 Glossary
Opportunistic network: A sparse dynamic wireless network where mobile nodes

work on ad hoc mode and can communicate with each other when they move
into their communication range.

Mobile Social Network: A mobile communication system focusing not only on the
interactions but also on the social aspects of the users.

Unicast: One-to-one communication in opportunistic networks, where one mobile
node sends information to another node.

Multicast: One-to-many communication where where one mobile node sends infor-
mation to a set of destinations.
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