
Probabilistic Task Assignment in Edge Computing

Seth Brozdzik

Department of Electrical and Computer Engineering

Rowan University

Glassboro, NJ

brodzi22@students.rowan.edu

Michael Paulson

Department of Computer Science

Texas State University

San Marcos, TX

mrp160@txstate.edu

Xiao Chen

Department of Computer Science

Texas State University

San Marcos, TX

xc10@txstate.edu

Abstract—Recently, edge computing has attracted a lot of

attention from academia and industry. One of the important

problems in edge computing is the task assignment problem.

Many task assignment optimization problems in the literature

do not consider uncertain parameters. In this paper, we adopt

the chance-constrained method as a powerful paradigm to

model uncertainty in our task assignment optimization problem.

Chance-constrained programming is one of the most difficult

classes of optimization problems. To solve our defined problem,

we propose a method called FMS that finds the optimal solution

accurately and quickly. We first transform the original proba-

bilistic problem into an equivalent problem using the Gauss

error function, and then rely on an auxiliary problem to decrease

the search space and find the candidate points that lead to

the optimal solution and, therefore, solve the defined problem.

Simulation results confirm the correctness and efficiency of our

method.

Index Terms—candidate points, chance-constrained, edge

computing, optimization, search space

I. INTRODUCTION

Recently, edge computing has attracted a lot of attention

from academia and industry [9], [11]. It pushes mobile

computing, network control, and storage to distributed devices

at the network edge, providing server resources, data analysis,

and artificial intelligence closer to data collection sources. It

offers faster data processing, generates less network traffic,

and is less costly than cloud computing.

One of the important problems in edge computing is the

task assignment problem [16], which involves the transfer of

resource-intensive computational tasks to external platforms

or devices on the edge. Numerous people have worked on

various task assignment optimization problems [3], [7], [18],

but most of the problems do not involve random parameters.

In reality, many parameters are uncertain; for example, the

latency between the time the client sends out a task to an

edge device and the time the client receives a reply is not

predictable. In this paper, we adopt the chance-constrained

method [1] as a powerful paradigm to model uncertainty in

our optimization problem. This method allows us to formulate

an optimization problem that ensures that the probability of

meeting a certain constraint is above a certain level. Chance-

constrained methods have a plethora of applications from

telecommunication and medicine to finance [17].

In this paper, we consider a chance-constrained task assign-

ment optimization problem. More specifically, we assume that

a client needs to choose some of n edge devices to process

tasks. If the client chooses device i, there is a network delay di
associated with it. The delay di is a stochastic variable which

we assume follows a Gaussian distribution with mean µi and

variance σ2

i , i.e., di ∼ N(µi, σ
2

i ), i = 1, 2, · · · , n. We also

know that the amount of work each device can finish in its

capacity is wi. The devices process the work sequentially. Our

goal is to assign work to devices such that, with a probability

(confidence level) p, the total delay is minimized and the total

amount of work finished exceeds a certain amount W .

The chance-constrained method is a relatively robust ap-

proach to model uncertainty; however, it is often difficult to

solve [2]. One way to try is brute force, where all possible

assignments are enumerated. However, this method is not

scalable with an increase in n. Inspired by the ideas from [13],

[14], we propose an algorithm called Finding the Minimal

Solution (FMS) to quickly reach the minimum solution by

substantially reducing the search space. The main idea is as

follows: We first transform the original chance-constrained

probabilistic problem, which we call P1, using the Gauss

error function [4] into an equivalent problem P2. Then, we

relate P2 to an auxiliary problem P3. With a series of theo-

rems, we prove that we can significantly decrease the search

space and find the candidate points that lead to the solution

to P2 through P3. After we obtain the candidate points

of P2, we choose the one that minimizes our optimization

goal as the solution to P2, and therefore solve the original

problem P1. To verify the correctness of our algorithm, we

conduct simulations comparing the proposed FMS method

and a variation method called Finding the minimal solution

using Binary Search (FBS) with the ground truth solution

provided by the brute forth algorithm (BF). Simulation results

show that, using the brute force method as a benchmark, most

of the time, both MFS and FBS can produce the exact same

minimal solutions as the BF method. And when the solutions

are different, the deviation is only about a few percentage

points from the optimal. In the process of finding the optimal

solution, both MFS and FBS have greatly narrowed down the

search space, with FBS using a few more attempts than MFS

due to its simplicity while MFS successfully pinpointing the

solution in a couple of tries thanks to its consideration of the

problem structure.

The differences of our work from others and the key

contributions of our work are as follows:

• We define a chance-constrained task assignment opti-



mization problem in an edge network.

• We propose a method to solve the probabilistic problem

with high accuracy and a small search space.

• Simulation results confirm the correctness and efficiency

of our method.

The rest of the paper is organized as follows: Section II

references the related work, Section III presents the problem,

Section IV provides the solution, Section V describes the

simulations conducted, and the conclusion is in Section VI.

II. RELATED WORK

In the literature, many papers have discussed task assign-

ment optimization problems in edge networks [3], [7], [18].

In [3], the authors proposed a multi-objective optimization

solution to assign different application tasks to different edge

devices while minimizing the energy consumption of edge

devices and the computation time of tasks. In [7], the authors

put forward a new joint task assignment and resource alloca-

tion approach in a multi-user environment to minimize energy

consumption with application latency constraint. And in [18],

the authors presented a task offloading and power assignment

optimization algorithm for minimizing task completion time

under mobile device energy constraint. In these optimization

problems, uncertain parameters are not considered, which is

what we aim to address in this paper.

To model optimization problems under uncertainty, we

adopt the chance-constraint approach, a formulation of an

optimization problem to ensure that the probability of meeting

a certain constraint is above a certain level. Some early work

dates back to the 1950s, with pioneers such as Charnes and

Cooper [6], Charnes et al. [5], Miller and Wagner [12], and

Prékopa [15], who considered problems with individual or

joint chance constraints. Chance-constrained problems are

one of the most difficult classes of optimization problems

[10] and are generally difficult to solve, except for special

cases such as the minimum spanning tree [8] and linear

optimization [17].

The closely related papers to our problem are [13] and

[14]. In [13], the authors consider the problem of finding

the shortest paths in a graph with independent randomly

distributed edge lengths. The goal is to maximize the proba-

bility that the path length does not exceed a given threshold.

They assume each edge has independent normally distributed

length and relate the problem to the linear combination of

mean and variance. In [14], the author focuses on a general

framework for reliable stochastic combinatorial optimization

that includes mean-risk minimization and models involving

the probability tail of the stochastic cost of a solution. Inspired

by these ideas, we develop a solution to our defined problem

in this paper.

III. PROBLEM DEFINITION

The problem we want to solve in this paper is defined as

follows: A client has some tasks that need to be processed

by edge devices and there are n wireless edge devices

available. If a client uses device i, there is a network delay

di associated with the device. Delay di is assumed to follow

a Gaussian distribution with mean µi and variance σ2

i , i.e.,

di ∼ N(µi, σ
2

i ), i = 1, 2, · · · , n. The amount of work

each device can finish in its capacity is wi. The devices

process the work sequentially. The goal is to assign work

to devices such that with probability p, the total delay is

minimized and the total amount of work finished exceeds

W . The mathematical representation of our problem, which

we call P1, is as follows:

minimize
X

D

s. t. P (
n
∑

i=1

dixi < D) ≥ p

n
∑

i=1

wixi ≥ W

xi ∈ {0, 1}, i = 1, 2, · · · , n

(P1)

In P1, D is the total delay. Parameter xi is either 0 or 1. If

a device i is chosen, xi = 1; Otherwise, xi = 0. The vector

X = {x1, x2, · · · , xn} that can minimize D is the optimal

solution we want to find to solve P1.

IV. OUR METHOD

A. Transformation

In order to find the optimal solution to P1, we first

make the following transformation. Since each di follows

a Gaussian distribution di ∼ N(µi, σ
2

i ), i = 1, 2, · · · , n,

the summation of these random variables
∑n

i=1
dixi also

follows a Gaussian distribution with mean µ =
∑n

i=1
µixi

and standard deviation σ =
√

∑n
i=1

σ2

i xi. We rewrite the

probabilistic condition in terms of the Gauss error function

(erf) [4] as follows.

P (

n
∑

i=1

dixi < D) =
1

2
(1 + erf(

D − µ√
2σ

)) ≥ p

So, D ≥ µ+ [
√
2erf−1(2p− 1)]σ

If p is given, then
√
2erf−1(2p − 1) is a constant. We

denote it by A, i.e., A =
√
2erf−1(2p− 1). Then,

D ≥ µ+Aσ

Therefore, to minimize D, we need to find the minimum

value of µ + Aσ. So, we have the following minimization

problem, which we call P2, that is equivalent to problem P1.

From now on, we will focus on finding the optimal solution

to P2 and thereafter solving P1.

minimize
X

µ+Aσ

s. t.

n
∑

i=1

wixi ≥ W

xi ∈ {0, 1}, i = 1, 2, · · · , n

(P2)

Now let us consider the time complexity of finding the

minimum value of µ + Aσ. As we know, if a device i is

chosen, its xi = 1, otherwise xi = 0. Since there are n



devices, there are 2n choices of these devices. Therefore, the

time complexity is O(2n) if we use the brute force method,

which is exponential and not scalable when n is large.

B. Auxiliary Problem

Next, we create an auxiliary problem to problem P2, which

we call problem P3, as follows:

minimize
X

µ+ kσ2

s. t.

n
∑

i=1

wixi ≥ W

xi ∈ {0, 1}, i = 1, 2, · · · , n

(P3)

The goal of P3 is similar to that of P2, but it is a linear

function of (µ, σ2) with a coefficient k(where k ≥ 0) instead

of (µ, σ) with a constant A. Here, k can take different

values and plays a very important role in solution search. We

denote the solution X to P3 at k as X(k). The constraints
∑n

i=1
wixi ≥ W in the two problems are the same. That

is, if we find a solution vector X that satisfies the constraint

in P3, it must satisfy the constraint in P2, even though the

minimum solution to P3 may not be the minimum solution

to P2. However, we can find all the candidate points of P2
through P3, as we will later prove that the candidate points

of P3 are also the candidate points of P2. With the candidate

points, we can quickly find the minimal solution to P2.

The following theorems show the properties of P3.

Theorem 1: For a pair (µ, σ2), µ+ kσ2 is a monotonically

increasing function with respect to k.

Proof. Suppose (µ1, σ2
1) and (µ2, σ2

2) are the minimum

solutions to problem P3 at k1 and k2 (k2 > k1), respectively.

We want to prove that µ1 + k1σ
2
1 < µ2 + k2σ

2
2 . Since the

pair (µ1, σ2

1) is the minimum solutions to P3 at k1, we

have µ1 + k1σ
2

1
≤ µ2 + k1σ

2

2
. And since k2 > k1, we

have µ2 + k1σ
2
2 < µ2 + k2σ

2
2 . Combining the two, we have

µ1 + k1σ
2

1
≤ µ2 + k1σ

2

2
< µ2 + k2σ

2

2
. Therefore, µ+ kσ2 is

a monotonically increasing function with respect to k. �

Theorem 2: Suppose (µ1, σ2
1) and (µ2, σ2

2) are the minimum

solutions to problem P3 at k1 and k2, respectively. If k2 > k1,

then σ2

2
≤ σ2

1
.

Proof. Because (µ1, σ2
1) is the minimum solution at k1, we

have µ1 + k1σ
2

1
≤ µ2 + k1σ

2

2
. Also, because (µ2, σ2

2
) is the

minimum solution at k2, we have µ1 + k2σ
2

1
≥ µ2 + k2σ

2

2
.

Subtracting the two sides of these two, we get (k2−k1)σ
2

1 ≥
(k2 − k1)σ

2

2
. Therefore, σ2

2
≤ σ2

1
. �

C. Our Proposed Algorithm FMS

Now we present the main algorithm Finding the Minimum

Solution to P2 (FMS) in Fig. 1. It has three steps. In the first

two steps, we rely on the auxiliary problem P3 to produce

the candidate points of our target P2 problem. In Step (1),

we call Algorithm Reducing Search Space (RSS) in Fig. 2 to

reduce the search space of P3 by narrowing the range of k

from [0, ∞] to [0, h]. In Step (2), we call Algorithm Finding

Candidate Points (FCP) in Fig. 3 to return all the candidate

points of P3 in the k range [0, h]. These candidate points

are also the candidate points of P2 (proof below). Finally,

Algorithm FMS: Finding the Minimum Solution to P2

Require: Input: µi, σi, wi for i = {1, 2, · · · , n}, A, W

Output: the minimum solution X to P2
1: Call Algorithm RSS to get the search range of [0, h] in

P3
2: Call Algorithm FCP to obtain all the candidate points in

the search range [0, h] in P3
3: Compare all the X values of the candidate points using

the objective function µ+Aσ to get the minimum solution

to P2

Fig. 1. Algorithm to find the minimum solution to P2

in Step (3), we find the minimum solution to P2 from these

candidate points.

In the following, we will explain these algorithms in detail.

Step 1. Algorithm RSS

In Step (1) of Algorithm FMS, we call Algorithm RSS in

Fig. 2 to decrease the search range of k in P3 from [0, ∞]

to [0, h], where h = A
σ

. In RSS, we first solve P3 at 0 and

obtain X(0) (line 1). In line 2, we assign σ0 to σ. The notation

σk represents the σ at k. As long as kσ 6= A, we repeat the

following (lines 4-6): we update k to A
σ

, solve P3 at k to get

X(k), and assign σk to σ. After the loop terminates, we get

the upper bound h of the search range. We return the k range

[0, h] and the corresponding solutions X(0) and X(h).

Algorithm RSS: Reducing Search Space

Require: Input: µi, σi, wi for i = {1, 2, · · · , n}, A, W

Output: range [0, h] and the corresponding X(0) and

X(h)
1: solve P3 at 0 to get X(0)
2: σ = σ0

3: while kσ 6= A do

4: k = A
σ

5: solve P3 at k to get X(k)
6: σ = σk

7: end while

8: h = k

9: output range [0, h] and the corresponding X(0) and X(h)

Fig. 2. Finding the search range of k in P3

In Theorem 3, we show that the minimum solution to P2
cannot lie in the range of k from h to ∞ in P3. Therefore,

we only need to search the range of k from 0 to h in P3 to

find the minimum solution to P2, substantially reducing the

search space for P2.

Theorem 3: The minimum solution to P2 cannot lie in the

k range of (A
σ

∞) in P3.

Proof. Suppose (µ, σ2) is the minimum solution to P3 at
A
σ

. We denote (µ′, σ′2) as the minimum solution to P3 for

any k′ > A
σ

. We want to show that µ + Aσ ≤ µ′ + Aσ′.

Since (µ, σ2) is the minimum solution to P3 at A
σ

, we have

µ + Aσ = µ + A
σ
σ2 ≤ µ′ + A

σ
σ′2. And from Theorem 2,



we have µ′ + A
σ
σ′2 ≤ µ′ + A

σ′
σ′2 = µ′ +Aσ′. Putting these

together, we have µ+Aσ ≤ µ′+Aσ′. Since k′ is any number

greater than A
σ

, this means we cannot get a lower value in P2
by trying any k′ in the range of (A

σ
, ∞) in P3. Therefore,

the minimum solution to P2 cannot lie in the k range of (A
σ

,

∞) in P3. �

Step 2. Algorithm FCP

In Step (2) of Algorithm FMS, we call Algorithm FCP in

Fig. 3 to find all the candidate points in the k search range

[0, h] in P3. We show that the candidate points in P3 are

also the candidate points in P2.

The following theorem discloses the design idea of FCP.

Theorem 4: For a k range [a, b], if X(a) = X(b), then for

any c ∈ [a, b], we have X(c) = X(a) = X(b).

Proof. From Theorem 2, we know that σ2

b ≤ σ2

c ≤ σ2

a. If

X(a) = X(b), then σ2

a = σ2

b . Therefore, the only way for

σ2

b ≤ σ2
c ≤ σ2

a = σ2

b to hold is to let σ2
a = σ2

c = σ2

b . Since c

can be any value in the range [a, b], then all the k values in

this range have the same σ2 value.

Since (µa, σ2

a) is the solution to P3 at a, we have µa +
aσ2

a ≤ µc + aσ2
c . From the above, σ2

a = σ2
c . Therefore, µa ≤

µc. Now, we show that µa cannot be less than µc. We prove

this by contradiction. Suppose µa is strictly less than µc, i.e.,

µa < µc. Since c can be any value in the range [a, b], if c = b,

then µc = µb. Therefore, µa < µb. But if X(a) = X(b), then

µa = µb. We reach a contradiction. So, µa can only be equal

to µc and therefore equal to µb as well. This means that the

µ values of all the ks in the range of [a, b] are the same.

Combining the result of the σ2 values above, we have proved

that X(c) = X(a) = X(b). �

Theorem 4 tells us that, for a range [a, b] of k, if

X(a) = X(b), then we need only consider a or b as a

candidate point and can ignore all other values in the range.

However, if X(a) 6= X(b), then there may be more candidate

points in the range. In that case, we pick an intermediate point

c. If X(a) = X(c), then, besides a, we need only search

the range (c, b] for more candidate points. If X(c) = X(b),
then, besides b, we need only search the range [a, c) for more

candidate points. In this way, we can further narrow the search

space.

How do we determine an intermediate point c in the

range of [a, b]? The choice of c will affect the efficiency

and accuracy of our method. Ideally, it is a candidate point

that causes (µ, σ2) to change. We need to search for it.

To simplify, we can use binary search, picking the middle

point in the range each time to reduce the search space.

Alternatively, we can use the following method that considers

the property of the functions: we look at two functions defined

as f1(k) = µa + kσ2

a and f2(k) = µb + kσ2

b . In these

two functions, k is a variable and the others are constants.

Therefore, these two functions are lines and they intersect in

the range of [a, b] because f1(a) < f1(b) and f2(a) > f2(b).
To get the cross point, we let f1(k) = f2(k). Thus, the cross

point c is: −µa−µb

σ2
a
−σ2

b

. We treat the cross point as a candidate

point.

With these preparations, we have Algorithm FCP to find

all the candidate points in the range of k from 0 to h in P3.

Algorithm FCP: Finding Candidate Points

Require: Input: µi, σi, wi for i = {1, 2, · · · , n}, [0, h],

X(0), X(h), W
Output: candidate point set Sp

1: if X(0) == X(h) then

2: add element {0, X(0)} to the candidate point set Sp

3: return

4: end if

5: add elements {0, X(0)} and {h, X(h)} to the candidate

point set Sp

6: add range [0, h] to the range set Sr

7: while Sr is not empty do

8: pop the first range [a, b] from Sr

9: c = −µa−µb

σ2
a
−σ2

b

10: if c 6= a and c 6= b then

11: solve P3 at c to get X(c)
12: if X(c) == X(a) and X(c) 6= X(b) then

13: add range (c, b] to Sr

14: else if X(c) 6= X(a) and X(c) == X(b) then

15: add range [a, c) to Sr

16: else if X(c) 6= X(a) and X(c) 6= X(b) then

17: add element {c, X(c)} to Sp

18: add ranges [a, c) and [c, b] to Sr

19: end if

20: end if

21: end while

Fig. 3. Finding all the candidate points in the k range of [0, h] in P3

In Algorithm FCP, we first check if the X values (from

Algorithm RSS) at 0 and h are the same (line 1). If so,

according to Theorem 4, we only need to add element {0,

X(0)} to the candidate point set Sp and return (line 2-3). In

Sp, each element contains the k value and the corresponding

X(k). If the X values at 0 and h are different, we add two

candidate points 0 and h, and their corresponding X values

into the candidate point set Sp (line 5). We also add the range

[0, h] into the range set denoted by Sr (line 6). Then, as long

as the range set Sr is not empty, we do the following. We pop

the first range [a, b] from Sr (line 8). We calculate the cross

point c (line 9). If c is not equal to a nor b (line 10), then we

solve P3 at c to get X(c). Then there are three cases (lines

12-19). If X(c) is the same as X(a) but not X(b) (line 12),

then there cannot be new candidate points in the range [a, c]

from Theorem 4. So, we only add (c, b] to the range set Sr

(line 13) to further explore the candidate points. Similarly, we

only add range [a, c) to Sr if X(c) is the same as X(b) but

not X(a) (lines 14-15). Finally, if X(c) is not equal to X(a)
nor X(b) (line 16), we need to add c and its corresponding X

value to the candidate point set (line 17) and both [a, c) and

[c, b] to the range set (line 18) because there can be more

candidate points in both sections. The output of Algorithm

FCP will be all the candidate points and their corresponding



X values in P3. The following theorem shows that these

candidate points are also the candidate points of P2.

Theorem 5: The candidate points in P3 are also the

candidate points in P2.

Proof. In Algorithm FCP, we only add an intermediate point

c in the range of [a, b] to the candidate point set Sp when

X(c) is different from either X(a) or X(b) in P3. If there

is a change in the X value at c from that at a or b, there

may be a change in the corresponding µ and σ2 in P3 and,

consequently, a change in the objective function µ + Aσ in

P2. On the other hand, if there is no change in µ and σ2 in

P3, there should be no change in µ+Aσ in P2. Therefore,

the candidate points we consider to solve P3 are also the

candidate points we consider to solve P2. �

Step 3. Solving Problem P2

The final step of the FMS algorithm is to compare all the

X values of the candidates points using the objective function

µ + Aσ to get the minimum solution to the P2 problem. If

P2 is solved, then the original equivalent P1 is solved.

V. SIMULATIONS

In this section, we evaluate the performance of our pro-

posed algorithm using a customized simulator written in

Matlab.

A. Algorithms Compared

We compared the following algorithms to solve the P2
problem, and thus the P1 problem.

1) FMS: our proposed algorithm.

2) FBS: finding the minimal solution using binary search.

In this algorithm, we search for candidate points using

binary search in the k range [0, h].

3) BF: brute force algorithm. We enumerate all the possi-

bilities of X to find the minimum solution to P2. This

provides the ground truth to evaluate the accuracy of

our proposed algorithm.

B. Metrics

We used the following metrics.

1) The accuracy of FMS and FBS compared with the brute

force algorithm BF. We calculated the percentage of

cases in which algorithms FMS and FBS can produce

the same results as BF.

2) If the solutions from FMS and FBS differ from that

of BF, how much is the difference? We calculated the

deviation of FMS and FBS from BF.

3) The number of candidate points evaluated to find the

minimum solution to P2.

C. Settings

In our simulations, we tried n values from 10 to 20 in

increments of 2. For each device i, we randomly generated

µi from the range [10, 100], σi from the range [−5, 5], and

wi from the range [100, 200]. We set the probability p to

0.95 and 0.99, and W to 500. For each simulation, we ran

500 times and averaged the results.

 0

 20

 40

 60

 80

 100

10 12 14 16 18 20

S
a
m

e
 a

s 
B

F
 (

%
)

Number of Devices

FMS
FBS

(a) p = 0.95

 0

 20

 40

 60

 80

 100

10 12 14 16 18 20

S
a
m

e
 a

s 
B

F
 (

%
)

Number of Devices

FMS
FBS

(b) p = 0.99

Fig. 4. Percentages FMS and FBS finding the same result as BF

 0

 0.5

 1

 1.5

 2

 2.5

10 12 14 16 18 20

D
e
v
ia

ti
o
n
 f

ro
m

 B
F

(%
)

Number of Devices

FMS
FBS

(a) p = 0.95

 0

 0.5

 1

 1.5

 2

 2.5

 3

10 12 14 16 18 20

D
e
v
ia

ti
o
n
 f

ro
m

 B
F

(%
)

Number of Devices

FMS
FBS

(b) p = 0.99

Fig. 5. The deviation of FMS and FBS from BF when results are different

D. Experiments

1) Experiment 1: We compared the optimal solutions

found by FMS and FBS with that of the BF algorithm. We

calculated the percentage of cases in which algorithms FMS

and FBS produced the exact same minimal µ+Aσ (rounded

to four decimal places) as BF.

The simulation results are shown in Figs. 4 (a) and (b)

with p = 0.95 and p = 0.99, respectively. In both figures,

70%−80% of the time, FMS and FBS found exactly the same

optimal solution as BF. Comparing FMS and FBS, there is not

much difference between the solutions they found. Despite the

simplicity of FBS, its accuracy is satisfactory.

Next, we look at the solutions where FMS and FBS differ

from that of the BF. We used the following formula to

calculate the deviation of the minimal values produced by

FMS or FBS from that of the BF.

optA − optBF

optBF

(1)

In formula (1), variable optA refers to the minimal µ+Aσ

found by FMS or FBS and optBF is the minimal µ + Aσ

generated by BF. The results of this metric are shown in Figs.

5(a) and (b).

We can see from the results that when p = 0.95, the

deviations of FMS and FBS from BF are less than 2% and

when p = 0.99, the deviations are less than 2.5%. This means

that both algorithms can produce results quite close to, if not

the same as, the actual optimal. Comparing FMS and FBS, we

observe that FBS has slightly higher deviation than FMS due

to the fact that it does not take the structure of the problem

into account.



 0

 2

 4

 6

 8

 10

 12

 14

10 12 14 16 18 20N
u
m

b
e
r 

o
f 

c
a
n
d
id

a
te

 p
o
in

ts
 e

v
a
lu

a
te

d

Number of Devices

FMS
FBS

(a) p = 0.95

 0

 5

 10

 15

 20

10 12 14 16 18 20N
u
m

b
e
r 

o
f 

c
a
n
d
id

a
te

 p
o
in

ts
 e

v
a
lu

a
te

d

Number of Devices

FMS
FBS

(b) p = 0.99

Fig. 6. The number of candidate points compared in FMS and FBS

Number of devices FMS FBS BF

10 2.1067 7.8067 210

12 2.0833 7.5733 212

14 2.1167 9.5900 214

16 2.1467 9.9733 216

18 2.1067 9.8033 218

20 2.1600 12.0400 220

Fig. 7. Number of candidate points compared in FMS, FBS, and BF to find
the optimal solution when p = 0.95

2) Experiment 2: We compared the number of candidate

points evaluated in FMS, FBS, and BF to find the solution

to P2. We ran the simulations 500 times and averaged the

results, which are shown in Figs. 6(a) and (b) and table 7.

Figs. 6(a) and (b) compare the results of FMS and FBS

only. In both p = 0.95 and p = 0.99, FBS evaluated

significant more candidate points than FMS to find the

optimal solution. This is because FBS simply adds the middle

point of a range without considering the properties of the

problem, while FMS looks for the turning point based on the

problem structure. The number of candidate points evaluated

by FMS is only around 2, which means FMS is very quick

in pinpointing the optimal solution.

Since the BF algorithm traverses all the possibilities to

find the minimal solution, the number of candidate points

it evaluates is 2n, which rises exponentially as n increases.

It is hard to put its numbers with those of the other two into

the figures. So we use the table in Fig. 7 to compare the

three algorithms. The table illustrates how FMS and FBS,

particularly FMS, can save the effort required to find the

optimal solution to the problem. Here, we just present the

table when p = 0.95 due to space limitations; it is similar

when p = 0.99.

To summarize, we can see that both MFS and FBS produce

the exact same optimal solutions as BF most of the time,

and when the solutions differ, the deviation is only a few

percentage points away from the optimal. In finding the opti-

mal solution, both MFS and FBS have substantially reduced

the search space, with FBS getting the optimal solution in

a few more attempts than MFS due to its simple idea, and

MFS successfully pinpointing the solution in only a couple

of attempts thanks to its digestion of the problem structure.

VI. CONCLUSION

In this paper, we worked on a chance-constrained task

assignment optimization problem to deal with uncertainty and

proposed a method, FMS, to solve it. We first transformed

the original probabilistic problem into an equivalent prob-

lem using the Gauss error function, and then relied on an

auxiliary problem to decrease the search space and find the

candidate points, and then obtain the optimal solution to our

defined problem. We conducted simulations to evaluate the

performance of our method. Simulation results confirmed the

correctness and efficiency of our method. In this paper, we

assumed that the delay of each device follows a Gaussian

distribution. In the future, we will explore cases where pa-

rameters follow other distributions and where devices process

tasks concurrently.

ACKNOWLEDGMENT

This material is based upon work supported by the National

Science Foundation under REU grant #2149950.

REFERENCES

[1] Chance-constraint method. https://optimization.mccormick.northwest
ern.edu/index.php/Chance-constraint method.

[2] W. Ackooij, R. Zorgati, R. Henrion, and A. Möller. Chance Constrained
Programming and Its Applications to Energy Management. Stochastic
Optimization - Seeing the Optimal for the Uncertain, 2011.

[3] S. Almasri, M. Jarrah, and B. Al-Duwairi. Multi-objective optimization
of task assignment in distributed mobile edge computing. J Reliable
Intell Environ, 8:21–33, 2022.

[4] L. C. Andrews. Special functions of mathematics for engineers. SPIE
Press, 1998.

[5] A. Charnes, W. Cooper, and G. Y. Symonds. Cost horizons and certainty
equivalents: an approach to stochastic programming of heating oil.
Management Science, 4(3):235–263, 1958.

[6] A. Charnes and W. W. Cooper. Chance-constrained programming.
Management Science, 6:73–79, 1959.

[7] B. Dab, N. Aitsaadi, and R. Langar. Joint optimization of offloading
and resource allocation scheme for mobile edge computing. In 2019

IEEE Wireless Communications and Networking Conference (WCNC),
pages 1–7, 2019.

[8] H. Ishii, S. Shiode, T. Nishida, and Y. Namasuya. Stochastic spanning
tree problem. Discrete Applied Mathematics, 3(4):263–273, 1981.

[9] A. Jebamani and G. Winster. A Survey of Edge Computing in IOT
devices, 2022.

[10] S. Küçükyavuz and R. Jiang. Chance-constrained optimization under
limited distributional information: A review of reformulations based on
sampling and distributional robustness, 2021.

[11] Q. Luo, S. Hu, C. Li, G. Li, and W. Shi. Resource scheduling in edge
computing: A survey, 2021.

[12] B. L. Miller and H. M. Wagner. Chance constrained programming with
joint constraints. Operations Research, 13(6):930–945, 1965.

[13] E. Nikolova, J. A. Kelner, M. Brand, and M. Mitzenmacher. Stochastic
Shortest Paths Via Quasi-convex Maximization. In Algorithms – ESA
2006, pages 552–563. Springer Berlin Heidelberg, 2006.

[14] Evdokia Nikolova. Approximation algorithms for reliable stochastic
combinatorial optimization. In APPROX-RANDOM, 2010.

[15] A. Prékopa. Contributions to the theory of stochastic programming.
Mathematical Programming, 4(1):202221, 1973.

[16] F. Saeik, M. Avgeris, D. Spatharakis, N. Santi, D. Dechouniotis,
and et al. Task offloading in edge and cloud computing: A survey
on mathematical, artificial intelligence and control theory solutions.
Computer Networks, 2021.

[17] A. Shapiro, D. Dentcheva, and A. Ruszczynski. Lectures on Stochastic
Programming: Modeling and Theory, Second Edition. Society for
Industrial and Applied Mathematics, 2014.

[18] X. Wang, Z. Zhou, H. Chen, and Y. Zhang. Task offloading and
power assignment optimization for energy-constrained mobile edge
computing. In 2021 Ninth International Conference on Advanced Cloud
and Big Data (CBD), pages 302–307, 2022.


