
Maximizing the Total Utility of Requesters in

Crowdsourcing

Xiao Chen

Department of Computer Science, Texas State University, San Marcos, TX 78666
Email: xc10@txstate.edu

Abstract—Crowdsourcing coordinates a large group of workers

online to do small tasks published by requesters on a crowd-

sourcing platform. In the literature, the model used by many

papers assumes that one task is given to and completed by one

worker only. In this paper, we consider a model that extends this

model in space and time. Based on our model, we formulate an

optimization problem from the perspective of the requesters that

maximizes the utility of all the requesters subject to the constraint

that the total workload given to a worker should not exceed

his capability. We then provide a solution to the problem and

design distributed algorithms for the requesters and the workers

to interact with each other in multiple rounds. After that, we give

a concrete example to explain the solution and the algorithms.

Then, we discuss the convergence speed of our algorithms using

different methods. Finally, we conduct simulations to compare

these convergence methods and draw conclusions.

Index Terms—convergence, crowdsourcing, optimization, util-

ity, workload

I. INTRODUCTION

Crowdsourcing [2] has gained popularity in recent years be-

cause it allows requesters to find a group of workers online to

work on small tasks that an individual or organization cannot

easily do. There are three basic components in crowdsourcing,

as shown in Fig. 1: requesters (R1, R2, · · ·) who publish

tasks on a platform, workers (W1, W2, · · ·) who carry out

the tasks, and a platform such as Amazon Mechanical Turk

[1] that matches requesters and workers.

In the literature, the model used by many papers [11],

[13], [18] assumes that one task is given to and finished

by one worker. In this paper, we consider a model that is

an extension of this model. We assume that a task from a

requester may be processed by multiple workers in a pipeline

fashion. For example, in Fig. 1, a task from requester R3 needs

to be processed by workers W1, W3, and W5 sequentially.

Similar to the existing model, a requester can have multiple

tasks and a worker can get tasks from different requesters.

For instance, requester R3 has another task that needs to be

finished by worker W4, and worker W1 participates in tasks

from requesters R1, R2, and R3.

In our model, we not only extend the one-task-by-one-

worker model to a one-task-by-multiple-worker model (which

we call space extension), but also extend the model in time.

We assume that a requester can generate some amount of the

same task continuously over time and distribute it to the same

workers to finish. With time extension, we are able to model

the interaction between the requester and workers over time.

That is, in each round, the requester can decide how much

Fig. 1. A crowdsourcing model

workload of tasks should be assigned to the workers based

on the prices charged by them. When a worker receives the

workload from the requester, he can decide the price he will

charge the requester next time. Once the prices are changed

by the workers, the requester can update the workload of the

task to send to the workers and so on. For the requester, the

higher the prices, the lower the amount of work he is willing to

give to the workers. And for the workers, the more workload

they can get from the requester, the higher the prices they can

charge the requester. The requester and workers will interact

with each other like this for many rounds. We also assume

that, in this whole process, at any time, the workload obtained

by each worker should not exceed his capability. If we set

the number of workers to finish a task to one and the number

of rounds to one in our model, then our model is exactly the

same as the one in the literature.

One important question to make crowdsourcing practical

is how to motivate workers to contribute to the tasks. This

has been extensively studied [6], [9], [16], [21], [23]. In this

paper, we shift gears to look at the problems on the side of the

requesters, which have not been discussed as much. Based on

our defined model, we first formulate an optimization problem

to maximize the total utility of all the requesters, subject to the

constraint that the total workload assigned to a worker should

not exceed his capability. Then, we provide a solution to the

optimization problem and propose distributed algorithms for

the requesters and the workers to interact with each other in

multiple rounds. After that, we give a concrete example to

explain the solution and the algorithms. We then discuss the

convergence speed of our algorithms using different methods.

Finally, we conduct simulations to compare these methods and

draw conclusions.

The differences between our work and others, as well as the

key contributions of our work, are as follows:

• We extend the existing task-worker model in both space

and time.

• We define an optimization problem from the requesters’

perspective based on the extended model.

• We provide a general solution to the problem and propose

distributed algorithms for requesters and workers.

• We instantiate the solution with a concrete example to

explain how requesters and workers interact.

• We discuss the convergence speed of our algorithms using

various methods.

• We conduct simulations to compare these methods and

draw conclusions.

The rest of the paper is organized as follows: Section II

references the related work; Section III defines the problem;

Section IV provides the solution and algorithms; Section

V explains the solution using a concrete example; Section

VI discusses the convergence speed of the algorithms using

different methods; Section VII presents the simulations to

compare these methods; and the conclusion is in Section VIII.

II. RELATED WORK

In this section, we reference the related work and point out

the differences between our effort and theirs.

Utility Function: A utility function represents the level of pref-

erence in microeconomics. The definitions of utility functions

vary depending on the research problem. In [7], the utility

function was calculated by the sum of contexts and whether

the sensing task had been performed or not. In [17], it was

related to the sensing incentive in a certain area. In this paper,

the utility function of a requester reflects his satisfaction. The

more workload is completed, the more satisfied the requester

will be. However, the increase in satisfaction diminishes with

each additional amount of workload [3].

Supply and Demand: it is an economic model of price

determination in a market [4]. The higher the price, the lower

the demand, and vice versa. If no one conducts a task in crowd-

sourcing, the incentive will increase to promote participation

[17]. In our model, the requesters are the consumers; the higher

the prices the workers charge, the lower the demand to have

the work done. The workers are the suppliers; the higher the

demand, the higher the price they can ask for.

Crowdsourcing Model: Many papers [11], [13], [18] use a

model which assumes that one task is given to and completed

by one worker. Here, we assume that a task from a requester

may be processed by multiple workers in a pipeline fashion.

Perspective: The problems for the workers, for example,

how to motivate them to contribute to the tasks, have been

extensively studied [6], [9], [16], [21], [23]. In this paper, we

shift gears to look at the problems on the side of the requesters,

which have not been discussed as much.

Interaction of Players: A model that can describe the

interplay of two sides is the Stackelberg game [14], where

there are two players: the leader and the follower. The follower

will give a response to the leader’s strategy, and the leader

will consider the response in its next strategy. The papers that

utilized this model in various ways in crowdsourcing are [19],

[20], [22]. To make the Stackelberg game work, the leader

needs to know the information of the follower so that he can

calculate the optimal action from the follower. In our model,

a worker is a leader who initiates the interaction process by

charging a price, but he is not able to know the information

of all the other workers used by the follower (the requester)

since we allow a task to be processed by multiple workers.

Therefore, it is not appropriate to use the Stackelberg game to

model the interaction of the requesters and the workers here.

The interaction in our model will be described in Section IV.

III. PROBLEM FORMULATION

In this section, we formulate the problem. Suppose there are

n requesters and m workers. For a requester Ri, each of his

tasks may be processed by multiple workers in a pipeline way.

A worker Wj can get tasks from multiple requesters, but he

has a capability of only processing cj workload at any time.

Each worker asks a price based on his workload given by the

requesters and each requester decides how much workload to

send to the workers based on the prices the workers charge.

The workload from the requesters will in turn decide the price

charged by a worker. Our goal is to reflect the interaction

between the requesters and the workers in multiple rounds.

We use the utility function Ui(xi) to represent the satisfac-

tion or benefit of requester Ri related to the workload xi given

to the workers. The more work is done, the more satisfied a

requester becomes, so it should be an increasing function. It

should also be concave to reflect the principle of diminishing

marginal returns [3]. That is, the incremental satisfaction of

a requester drops with each additional amount of workload

xi. Our overall goal is to maximize the total utility of all the

requesters. We introduce a binary-valued indicator matrix A,

so that Aji = 1 if requester Ri sends workload to worker Wj ,

and Aji = 0 otherwise. Combining our goal and conditions,

we formulate an optimization problem as follows.

maximize
x

∑

i

Ui(xi)

subject to
∑

i

Ajixi ≤ cj , ∀j
(1)

This problem is to maximize the total utility of all the

requesters. The constraint states that for any worker Wj , the

total workload of the tasks he receives from the requesters

should not exceed his capability to finish the tasks.

IV. THE SOLUTION AND ALGORITHMS

In this section, we provide a solution to our defined problem

and propose algorithms for the requesters and workers.

In our defined problem, the utility functions are concave,

the constraints are linear, and the objective is to maximize.

Thus, the problem is convex. We can first turn the constrained

optimization problem into an unconstrained one by writing

down the Lagrangian [5]. We add a Lagrange multiplier pj

(pj ≥ 0) to each constraint. We name the multiplier pj because

it represents the price charged by worker Wj to the requesters

he works for. Now, the Lagrangian of the original problem (1)

has two variables: x and p. That is:

L(x, p) =
∑

i

Ui(xi) +
∑

j

pj(cj −
∑

i

Ajixi). (2)

For the two unknown parameters x and p, we first fix p.

Given p, we want to find x∗ that maximizes L(x, p). Since pj
and cj −

∑

iAjix
∗

i are non-negative, the following is true:

maxxL(x, p) =
∑

i

Ui(x
∗

i) +
∑

j

pj(cj −
∑

i

Ajix
∗

i)

≥
∑

i

Ui(x
∗

i)
(3)

This means that given p, maxxL(x, p) is an upper bound

of the original objective
∑

i Ui(xi). The x∗ that can maximize

L(x, p) can be calculated as follows: we take the partial derive

of L(x, p) with respect to xi and make it zero. We have:

∂L(x, p)

∂xi

= U ′

i(xi)−
∑

j

pjAji = 0.

Here,
∑

j pjAji can be rewritten as
∑

j∈W (i) pj , where the

set W (i) represents all the workers used by requester Ri in a

task. Thus,

U ′

i(xi) =
∑

j∈W (i)

pj . (4)

If the utility function is given, we can solve equation (4) to

get the optimal x∗ that maximizes L(x, p).
Then, we can tighten the upper bound by minimizing it over

p and have the Lagrange dual problem as follows. Since the

original problem (1) is convex, the answer to the dual problem

is exactly the answer to the original problem [5].

minimizepL(x
∗, p)

= minimizep{
∑

i

Ui(x
∗

i) +
∑

j

pj(cj −
∑

i

Ajix
∗

i)}.
(5)

For this dual problem, we can use the gradient method

[5]. The gradient is the partial derivative of L(x∗, p) with

respective to pj . That is,
∂L(x∗, p)

∂pj
= cj −

∑

i

Ajix
∗

i

We can rewrite
∑

i Ajix
∗

i as
∑

i∈R(i) x
∗

i , where the set R(i)
contains all the requesters that worker Wj works for. We derive

the following to find the optimal solution to problem (5).

pj [t] = max{pj[t− 1]− γ(cj −
∑

i∈R(i)

x∗

i), 0}
(6)

In this equation, t is the time stamp or round number and γ

is the step size. We assign the maximum of pj[t− 1]−γ(cj −
∑

i∈R(i) x
∗

i) and 0 to pj[t] to ensure that it is non-negative.

Once the solution to the problem is ready, we can write a

workload decision algorithm (WLD) for each requester Ri

to determine the workload to send to his workers and a

price update algorithm (PU) for each worker Wj to update

the price based on the workload he receives. These are

distributed algorithms- the requesters and the workers update

the workload and price independently based on the information

available to them at time t. At the same time, these algorithms

are interrelated. Once the workers change their prices, the

requesters will change their workload. And once the requesters

change their workload, the workers’ prices will be updated.

The process will continue until it converges. Finally, we have

the solution to the dual (5) and the original (1) problems.

Algorithm WLD: Workload Decision by Requester Ri

1: Inputs: the price charge from the workers

2: Output: the workload decided by requester Ri at time t.

3: /* At time t, each requester Ri calculates the total price

(denoted by Pi[t]) charged by the workers to finish a task

*/

4: Pi[t] =
∑

j∈W (i) pj[t− 1]
5: obtain x∗

i [t] by solving equation (4)

Fig. 2. The algorithm used by requester Ri to decide the workload

Algorithm PU: Price Update by Worker Wj

1: Inputs: the workload from the requesters

2: Output: the updated price

3: /* At time t, each worker Wj sums up the total workload

(denoted by Lj[t]) from the requesters */

4: Lj[t] =
∑

i∈R(i) xi[t]
5: /* update the price using equation (6) */

6: pj [t] = max{pj[t− 1]− γ(cj −
∑

i∈R(i) x
∗

i), 0}

Fig. 3. The algorithm used by worker Wj to update his price

V. AN EXAMPLE

In this section, we use a concrete example to explain the

proposed distributed algorithms. We show how the requesters

and workers interact with each other in the process.

For convenience’s sake, we scale the numbers to the range

of [0, 1]. Suppose there are 3 requesters and 4 workers. We

choose lnxi as the utility function for requester Ri, as it is

increasing, continuous, and differentiable. It is also concave

to reflect the principle of diminishing marginal returns.

Matrix A is shown in Fig. 4. It indicates that requester R1

has a task that requires the pipeline of workers W1, W2, and

W4, while requester R2 has a task that will be processed by

workers W2 and W3, etc. The workers’ capability vector C =
[c1, c2, c3, c4] = [1, 0.6, 0.8, 0.7] and the step size γ is set to 1.

Initially, each worker charges a price of 1. The requesters and

workers will update their workload and price in the following

loop until the process converges.

At time t = 0:

The charge for each requester is:

P1[1] = p1[0] + p2[0] + p4[0] = 1 + 1 + 1 = 3

P2[1] = p2[0] + p3[0] = 1 + 1 = 2

P3[1] = p3[0] + p4[0] = 1 + 1 = 2

Workers\Requesters R1 R2 R3

W1 1 0 0
W2 1 1 0
W3 0 1 1
W4 1 0 1

Fig. 4. Matrix A

Based on the charge, each requester decides the workload

to send to the workers by solving equation (4). The utility

function of requester Ri is lnxi, and the derivative of U ′

i(xi)
with respect to xi is 1

xi

. Therefore, each requester Ri sends

the following the workload to the workers.

x1[1] =
1

P1[1]
=

1

3
= 0.333

x2[1] =
1

P2[1]
=

1

2
= 0.5

x3[1] =
1

P3[1]
=

1

2
= 0.5

Next, the workers add up their workload from the requesters.

L1[1] = x1[1] = 0.333

L2[1] = x1[1] + x2[1] = 0.333 + 0.5 = 0.833

L3[1] = x2[1] + x3[1] = 0.5 + 0.5 = 1

L4[1] = x1[1] + x3[1] = 0.333 + 0.5 = 0.833

And then the workers update their prices according to the

workload they receive from the requesters.

p1[1] = max(p1[0] + L1[1]− c1, 0) = 0.333

p2[1] = max(p2[0] + L2[1]− c2, 0) = 1.233

p3[1] = max(p3[0] + L3[1]− c3, 0) = 1.2

p4[1] = max(p4[0] + L4[1]− c4, 0) = 1.133

These steps will be repeated at t = 2, 3, · · · until the process

converges. Finally, requester R1 will send a workload of 0.25,

R2 will send a workload of 0.35, and R3 will send a workload

of 0.45, respectively, to the workers after the convergence.

VI. CONVERGENCE DISCUSSION

In the above example, we can see that if the problem

is convex, the iteration process will eventually converge. In

this section, we are exploring various methods to accelerate

the convergence process. The speed of the convergence is

controlled by Step 6 in Algorithm PU, which uses the gradient

method. Therefore, we can explore various methods to make

the gradient method converge faster. We will try the popular

AdaGrad [15], RMSprop [8], Momentum [12], and Adam [10]

methods and embed them in Algorithm PU.

A. AdaGrad

This method improves the convergence process by consid-

ering the history of the squared gradient. The idea is translated

into the following three steps to replace Step 6 in Algorithm

PU. In formula (7), the variable curr is the gradient value

at the current x∗

i . The variable histj records the sum of all

the previous curr2. In updating pj [t], γ is still the step size

and ǫ is a very small number to prevent the denominator from

becoming zero.

curr = cj −
∑

i∈R(i)

x∗

i ;

histj [t] = histj[t− 1] + curr2;

pj [t] = max(pj [t− 1]− γ
curr

√

histj[t] + ǫ
, 0);

(7)

B. RMSprop

The RMSprop method is similar to AdaGrad, but it adds

weight β ∈ [0, 1] to the history and 1 − β to the current

gradient’s square.

curr = cj −
∑

i∈R(i)

x∗

i ;

histj [t] = β ∗ histj [t− 1] + (1− β) ∗ curr2;

pj [t] = max(pj [t− 1]− γ
curr

√

histj[t] + ǫ
, 0);

(8)

C. Momentum

Gradient descent with momentum remembers the solution

update (vj [t]) at each iteration and determines the next update

as a linear combination of the gradient and the previous update,

with the weight β being in the range of [0, 1]. The steps are

as follows:

curr = cj −
∑

i∈R(i)

x∗

i ;

vj [t] = β ∗ vj [t− 1] + (1− β) ∗ curr;

pj[t] = max(pj [t− 1]− γ ∗ vj [t], 0);

(9)

D. Adam

The Adam method is a combination of the AdaGrad and

Momentum methods. The steps are as follows: the parameters

β1 and β2 are weights between 0 and 1.

curr = cj −
∑

i∈R(i)

x∗

i ;

vj [t] = β1 ∗ vj [t− 1] + (1− β1) ∗ curr;

histj [t] = β2 ∗ histj[t− 1] + (1− β2) ∗ curr
2;

pj [t] = max(pj [t− 1]− γ
vj [t]

√

histj[t] + ǫ
, 0);

(10)

VII. SIMULATIONS

In this section, we conduct simulations to compare the

convergence processes of the various methods we discussed

above using Matlab. The example we use is the one in Section

V. We compare the following algorithms:

1) The Original Method (Org): Algorithms WLD and PU

2) The AdaGrad Method (AdaGrad): replacing Step 6 of

PU by steps in (7)

3) The RMSprop Method (RMSprop): replacing Step 6 of

PU by steps in (8)

4) The Moment Method (Moment): replacing Step 6 of PU

by steps in (9)

 0

 100

 200

 300

 400

 500

 600

 700

 800

.2 .4 .6 .8 1 2 3

R
o

u
n

d
s

Step size γ

Org

Fig. 5. The Original Method: γ and rounds to converge to the optimal solution

5) The Adam Method (Adam): replacing Step 6 of PU by

steps in (10)

A. The Original Method (Org)

In Org, the step size is fixed. We tried γ values from 0.2 to

1 with a step of 0.2. In this γ range, the larger the step size,

the faster the convergence speed. We also tried γ values of 2
and 3. The process converged even faster. However, when we

set γ to 4 and above, the process would no longer converge to

the optimal solution because the step size was too large. Fig.

5 shows the relationship between γ and the number of rounds

for the process to converge.

B. The AdaGrad Method (AdaGrad)

In AdaGrad, first we set ǫ to a very small number, 1.4901×
10−8. Second, the step size γ is no longer a constant; with

the increase of the rounds, it becomes smaller and smaller.

We initialized γ from 0.02 to 0.1 with a step of 0.02. The

results are shown in Fig. 6(a). We found that none of the

γs in this range was able to converge to the exact optimal

solution; instead, it oscillated in a very small area (from 0.2%
to 2%) around the optimal solution. We added a small circle

around a data point in the figure to represent that the process

only converges to the neighborhood of the optimal solution.

We will use this convention for all the figures below. In the

γ range from 0.02 to 0.1, the larger the γ, the faster the

process converged to the neighborhood of the optimal solution.

Comparing with Org, AdaGrad got to the neighborhood faster.

C. The RMSprop Method (RMSprop)

The RMSprop method is similar to AdaGrad, but with an

additional weight β to balance the history and the current

squared gradient. We tried β = 0.3, 0.5, 0.7, respectively. We

still set γ from 0.02 to 0.1 with a step of 0.02. The results

are in Fig. 6(b). Like AdaGrad, none of the γs was able

to converge to the exact optimal solution. The final results

oscillated in the 0.6% to 5% neighborhood of the optimal

solution. Smaller β values needed more rounds to converge

than the larger ones. This means putting a higher weight on

the current squared gradient rather than the history makes the

process converge faster. Comparing with AdaGrad, for the

same γ, the process could converge faster.

D. The Momentum Method (Momentum)

The Momentum method uses the β value to balance the

history and the current gradient. We tried β = 0.3, 0.5, 0.7,

respectively. We set γ from 1 to 6 with a step of 1. The

results are in Fig. 7(a). This time, treating the history and

the current gradient with the same weight resulted in most

rounds converging, compared to treating the two differently.

Also, when β = 0.3 and 0.5, the process could converge to the

exact optimal solution. But when β = 0.7, the process could

only converge to the 1% neighborhood of the exact optimal

solution.

E. The Adam Method (Adam)

The Adam method is a combination of the AdaGrad and

the Momentum methods, with two β variables. We tried β1 =
β2 = 0.3, 0.5, 0.7, respectively, and set γ from 0.02 to 0.1 with

a step of 0.02. The results are shown in Fig. 7(b). Again, none

of the γs was able to converge to the exact optimal solution;

the final results oscillated in the 0.2% to 3% neighborhood of

the optimal solution. Interestingly, smaller β values converged

in fewer rounds than the larger ones, unlike RMSprop.

F. Comparison Summary

We summarize the simulation results as follows. Out of

the five methods we compared, Org can converge to the

exact optimal solution, while the others may only converge

to the neighborhood of the optimal solution. The order of

the convergence speed, from the fastest to the slowest, is:

RMSprop, AdaGrad, Adam, Momentum, and Org. This means

that adding the history and the current gradient to the update

does improve the convergence speed in Org. It is also obvi-

ous that considering the current squared gradient (RMSprop,

AdaGrad, Adam) performs better than just considering the

current gradient (Momentum). In addition, putting weights

to the history and the current squared gradient (RMSprop)

outperforms the one without weights (AdaGrad). Finally, how

much weight should be given to each factor to outperform does

not have a consistent answer (RMSprop, Momentum, Adam).

VIII. CONCLUSION

In this paper, we have considered a crowdsourcing model

that extends the current model in space and time. Based

on our model, we have formulated an optimization problem

from the perspective of the requesters that maximizes the

total utility of all the requesters, subject to the constraint

that the total workload given to a worker should not exceed

his capability. We have provided a solution and designed

distributed algorithms for the requesters and the workers to

interact with each other in multiple rounds. We have also

given a concrete example to explain the solution and the

algorithms. We have then discussed the convergence speed

of our algorithms using different methods. Finally, we have

conducted simulations to compare these convergence methods

and drawn conclusions.

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.02 0.04 0.06 0.08 0.1

R
o
u
n
d
s

Step size γ

AdaGrad

(a) AdaGrad: rounds to converge to the neighborhood of
optimal

 0

 10

 20

 30

 40

 50

 60

0.02 0.04 0.06 0.08 0.1

R
o
u
n
d
s

Step size γ

RMSprop: β=0.3
RMSprop: β=0.5
RMSprop: β=0.7

(b) RMSprop: rounds to converge to the neighborhood
of optimal

Fig. 6. The AdaGrad and RMSprop Methods

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6

R
o
u
n
d
s

Step size γ

Momentum: β=0.3
Momentum: β=0.5
Momentum: β=0.7

(a) Momentum: rounds to converge to the neighborhood
of optimal

 0

 20

 40

 60

 80

 100

 120

 140

0.02 0.04 0.06 0.08 0.1

R
o
u
n
d
s

Step size γ

Adam: β1=β2=0.3
Adam: β1=β2=0.5
Adam: β1=β2=0.7

(b) Adam: rounds to converge to the neighborhood of
optimal

Fig. 7. The Momentum and Adam Methods

REFERENCES

[1] Amazon mechanical turk. http://mturk.com.
[2] Crowdsourcing. https://en.wikipedia.org/wiki/Crowdsourcing.
[3] Marginal utility. https://en.wikipedia.org/wiki/Marginal utility.
[4] Supply and demand. https://en.wikipedia.org/wiki/Supply and demand.
[5] S. P. Boyd and L. Vandenberghe. Convex Optimization. Cambridge

University Press, 2004.
[6] Z. Feng, Y. Zhu, Q. Zhang, L. M. Ni, and A. V. Vasilakos. TRAC:

Truthful Auction for Location-Aware Collaboration Sensing in Mobile
Crowdsourcing. In IEEE INFOCOM, 2014.

[7] Y. Han, Y. Zhu, and J. Yu. Utility-maximizing data collection in crowd
sensing: An optimal scheduling approach. In IEEE SECON, 2015.

[8] G. Hinton. Lecture 6e rmsprop: Divide the gradient by a running
average of its recent magnitude. https://www.cs.toronto.edu/∼tijmen/
csc321/slides/lecture slides lec6.pdf, 2020.

[9] L. G. Jaimes, I. Vergara-Laurens, and M. A. Labrador. A location-based
incentive mechanism for participatory sensing systems with budget
constraints. In IEEE PERCOM, 2012.

[10] D. Kingma and J. Ba. Adam: A method for schochastic optimization.
https://arxiv.org/abs/1412.6980, 2014.

[11] W. Liu, E. Wang, Y. Yang, and J. Wu. Worker selection towards data
completion for online sparse crowdsensing. In INFOCOM, 2022.

[12] N. Qian. On the momentum term in gradient descent learning algorithms.
Neural Networks, (12):145–151, 1999.

[13] G. Samore, J. Bates, and X. Chen. Improving satisfaction in crowd-
sourcing platforms. In IEEE International Conference on Intelligent

Data and Security, 2021.
[14] M. Simaan and J. B. Cruz. On the stackelberg strategy in nonzero-sum

games. Journal of Optimization Theory and Applications, (11):533–555,
1973.

[15] J. Duchi; E. Hazan; Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning

Research, (12):2121–2159, 2011.
[16] J. Sun and H. Ma. A behavior-based incentive mechanism for crowd

sensing with budget constraints. In IEEE ICC, 2014.
[17] T. Tsujimori, N. Thepvilojanapong, Y. Ohta, Y. Zhao, and Y. Tobe.

History-based incentive for crowd sensing. In ACM IWWISS, 2014.
[18] H. Wang, E. Wang, Y. Yang, J. Wu, and F. Dressler. Privacy-

preserving online task assignment in spatial crowdsourcing: A graph-
based approach. In INFOCOM, 2022.

[19] R. Wang, F. Zeng, L. Yao, and J. Wu. Game-Theoretic Algorithm
Designs and Analysis for Interactions Among Contributors in Mobile
Crowdsourcing With Word of Mouth. IEEE Internet of Things Journal,
7(9), 2020.

[20] Y. Xu, M. Xiao, J. Wu, S. Zhang, and G. Gao. Incentive mechanism
for spatial crowdsourcing with unknown social-aware workers: A three-
stage stackelberg game approach. IEEE Transactions on Mobile Com-

puting, 2022.
[21] D. J. Yang, G. L. Xue, X. Fang, and J. Tang. Crowdsourcing to

smartphones: incentive mechanism design for mobile phone sensing.
In ACM MOBICOM, 2012.

[22] X. Yang, J. Zhang, J. Peng, and L. Lei. Incentive mechanism based on
stackelberg game under reputation constraint for mobile crowdsensing.
International Journal of Distributed Sensor Networks, 17(6), 2021.

[23] D. Zhao, X.-Y. Li, and H. Ma. How to crowdsource tasks truthfully
without sacrificing utility: Online incentive mechanisms with budget
constraint. In IEEE INFOCOM, 2014.

