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Abstract—In edge-clouds, servers are placed at the edge of

the network so that mobile devices can get the jobs done with

low latency. One fundamental and critical problem in edge-

cloud systems is how to place independent jobs on the edge and

cloud servers with the objective to minimize the makespan. In

this paper, we propose a general model for this problem and put

forward an algorithm called Cloud-Edge (CE) scheduling for two

servers. We prove that the competitive ratio of the algorithm

is upper-bounded by two and no other online algorithm can

do better than it in the worst case. We conduct extensive

simulations to verify the competitive ratio of our proposed

algorithm. Simulation results confirm the correctness of our

theoretical analysis regardless of the communication overhead.

Index Terms—cloud, competitive ratio, makespan, mobile edge

computing, online scheduling

I. INTRODUCTION

With the development of cloud computing, more and more

mobile applications offload computation-intensive jobs to

remote cloud data centers [10]. Although such operation could

substantially enhance the capability of mobile devices, a long

communication delay is inevitable. To mitigate the problem,

people place servers at the edge of the network to be closer to

the users so that mobile devices can obtain computing results

with low network latency. However, the servers at the edge

are resource constrained compared with those in the cloud.

So a remote cloud is needed to support the edge resources so

that mobile devices can offload more computation demanding

jobs to the cloud via the Internet. Thus, the paradigm that

combines the resources at the edge and the cloud, called edge-

clouds, also known as edge computing, is drawing more and

more attention from the researchers and developers [12], [13].

Fig. 1 shows an edge-clouds environment. As we can see

from the figure, some servers are placed at the edges. We call

them edge servers. And some are put in the remote cloud.

We call them cloud servers. If a job is executed on an edge

server, we can ignore the communication latency. The total

response time of the job is the job’s running time. But if a

job is offloaded to the remote cloud server, the total response

time will be the job’s running time plus the back-and-force

communication delay, which we call the overhead of the job.

In an edge-cloud network, a fundamental and critical

problem is how to schedule the in-coming jobs to the edge

and cloud servers. Some work on scheduling assumed a First-

Come-First-Serve scheme [11], [18] and some others schedule

jobs to achieve load balancing [16], [17]. However, most of

the studies assumed that the arrival of the jobs follows some

Fig. 1. Edge-clouds environment

known distribution, so that they can use statistical model to

design an efficient strategy. In reality, job release may not

follow a known distribution. Tan et al. [15] proposed a model

where the jobs are generated in arbitrary order, but their

results are based on the speed augmentation model.

In this paper, we investigate general online job scheduling

algorithms in edge-clouds without the assumption of stochas-

tic process and speed augmentation model. Our objective is

to minimize the makespan (i.e., the length of the schedule, or

equivalently the last job completion time). An input to this

problem consists of a sequence of jobs of different sizes (or

running times) and their corresponding overhead if they are

assigned to the cloud servers. Each job has to be assigned to

one of the edge or cloud servers. There are no dependencies

between the jobs and no release times. The job scheduling

problem in edge-clouds is related to the classic m-machine

scheduling problem [5]. Even the special case of m = 2
is NP-hard. In order to analyze the situation further, in this

paper, we focus on two servers: one edge server and one cloud

server. We leave the extension to more than two servers in

the future research.

We use competitive ratio as the metric to evaluate our

online algorithm, defined as the largest possible ratio of the

makespan achieved by the online algorithm and the offline

optimal makespan for any possible set of jobs and overhead.

It represents the worst-case scenario of the online algorithm.

The differences of our work from others and the key

contributions of our work are as follows:

• we formulate a job scheduling problem in edge-clouds

under a general model using two servers.

• we propose an online algorithm called Cloud-Edge (CE)

scheduling with a competitive ratio bounded by 2. We

show that no other online algorithm can do better than

CE scheduling in the worst case.



• we conduct extensive simulations to validate the com-

petitive ratio of our algorithm. The experimental results

confirm the correctness.

The rest of the paper is organized as follows: Section II

references the related work. Section III defines the problem.

Section IV presents our algorithm and the proof of the

competitive ratio. Section V describes the simulations we

have conducted, and the conclusion is in Section VI.

II. RELATED WORK

A. Cloud and Edge Computing

There have been quite a lot of studies on job placement

problems to balance the resource utilization and response

time among the servers in edge-clouds. Urgaonkar et al. [17]

formulated the workload scheduling problem as a Markov

Decision Process problem and adopted some Lyapunov op-

timization technique to solve this problem. Tong et al. [16]

divided the edge-clouds into different levels and presented

a heuristic algorithm to dispatch the workload within this

hierarchical architecture. The above load balancing schemes

adopt stochastic optimization, where they assume that the

job release process follows a certain distribution. However,

in practice, the jobs released from applications can be in

arbitrary order and times. Tan et al. [15] proposed a model

where the jobs are generated in arbitrary order. Their goal

is to minimize the total weighted response time over all

the jobs. They derived the first online job dispatching and

scheduling algorithm in edge-clouds and proved that it is

(1 + ǫ)-speed O(1
ǫ
)-competitive for any constant ǫ ∈ (0, 1)

based on the speed augmentation model. In our study, we

work on a general model without the assumption of job

release distribution and speed augmentation model.

B. Classic Online Machine Scheduling Problem

The job placement problem in edge-clouds is related to

the classic m-machine scheduling problem. The m-machine

scheduling problem is one of the most widely-studied prob-

lems in computer science [5]. Even the special case of m = 2
is NP-hard. Here we only address online problems and solu-

tions because, comparing with offline problems, they are more

practical in real world because we need to make immediate

decisions when complete information is not available.

The first proof of competitiveness of an on-line scheduling

algorithm was given by Graham in 1966 [8]. He proposed a

deterministic greedy algorithm called List Scheduling (LS).

The studied model has m identical machines and a sequence

of jobs characterized by their running times. The objective

is to minimize the makespan. The LS algorithm is simple:

whenever a new job arrives, we place it on the machine with

the smallest load. The competitive ratio of LS is 2 − 1

m
[8],

[9]. If we have two identical machines, we put the new job

on the machine with smaller load and the competitive ratio

is 3

2
. Several algorithms have obtained better worst-case ratio

than LS. Galambos and Woeginger [7] improved the upper

bound to 2 − 1

m
− em, where em goes to 0 as m goes to

infinity. Bartal et al. [3] developed a heuristic with worst-

case ratio of 2 − 1

70
≈ 1.986. The current best result is due

to Albers [1]. The author gave an algorithm which achieves a

worst-case ratio of at most 1.923 for all m. However, Faigle

et al. [6] have shown that no deterministic on-line algorithm

can have a worst-case ratio smaller than 2 − 1

m
for m = 2

and m = 3. Thus, there is no deterministic on-line scheduling

algorithm with worst-case ratio lower than 3

2
. The latter result

can be obtained by considering the instance where the first

two items are a1 = a2 = 1 and the third item may be either

a3 = 0 or a3 = 2. For m > 4 they gave a lower bound of

1+ 1√
2

. Bartal et al. [4] improved this lower bound to 1.837
for m large enough. All of these algorithms assume that the

machines are identical.

If the machines are not identical, there are two variants.

In the variant of uniformly related machines, the ith machine

has speed vi > 0. If a job with running time t is scheduled on

it, its processing takes time t

vi
. Another variant is unrelated

machines, where the vector of speeds is possibly different for

each job. Aspnes et. al. in [2] found that for related machines

the competitive ratio of LS is asymptotically Θ(logm) and

for unrelated machines the competitive ratio of LS is n.

The problem we study in this paper is different from the

above problems. In our problem, the finish time of a job is

related to the communication overhead, which reflects the

state of the network. Next we define our problem formally.

III. PROBLEM DEFINITION

Suppose there is a sequence of n jobs A =
{a1, a2, · · · , an}(ai > 0 for all i), where each job is charac-

terized by its running time ai and has to be scheduled on one

of the servers. To facilitate discussion, we denote the cloud

server as P1 and the edge server as P2. If a job is scheduled on

the edge server, there is no communication overhead for that

job. We denote by O = {o1, o2, · · · , on}(oi > 0 for all i)
the corresponding overhead of each job if it is placed on the

remote cloud server. Our goal is to minimize the total length

of the schedule, the makespan. In this paper, we study on-

line algorithms where the algorithms do not have the access

to the whole input sequence to reflect the realistic scenario.

The algorithms learn the input piece by piece and react to the

next job with only a partial knowledge of the input.

From the above definition, we take vectors A and O as

inputs. How do we know the job size and overhead before we

dispatch them? In order to do the estimation, we can use the

idea in estimating the next CPU burst time in CPU scheduling

algorithms [14]. Vector A is obtained in this way and so as

O. We use O as an example here. To estimate the overhead

of a particular job, our formula is: õt+1 = αot + (1 − α)õt,
where õt+1 is the predicted value of the next communication

overhead at time t+1, ot is the actual overhead at time t, and

α is a weight in the range of [0,1]. For the first time, we do

not know what the communication overhead of a particular

job is, we can guess a reasonable number. After the job is

sent to the server and the reply comes back, then we know

the actual communication overhead. With the actual overhead



and the guessed overhead, we can use the formula to estimate

the next communication overhead for this kind of job.

IV. OUR SOLUTION

In this section, we present our heuristic solution to the

defined problem. First, we show why the LS algorithm can

no longer be used to solve the problem. Next we propose our

online scheduling algorithm that has a competitive ratio of 2.

A. LS Algorithm not Working

The first intuition to solving our problem is to try the LS

algorithm. However, the competitive ratio of LS will no longer

be bounded. Here is why. Suppose we have jobs A = {1, 1}
and their corresponding overhead O = {1, L}, where L is a

very large number. If we use LS, each time we place the new

job on the server with a smaller load. The resulting schedule

is P1 : {L + 1} and P2 : {1}, which has a makespan of

L + 1. The optimal schedule is P1 : {} and P2 : {1, 1}. It

has a makespan of 2. Thus, the competitive ratio of LS is
L+1

2
. Since overhead L can be infinite, the competitive ratio

is not bounded in the worst case. This example tells us that,

in order to come up with an online algorithm with a bounded

competitive ratio, we need to take overhead into account since

it plays an important role in the result.

B. Our Algorithm

In this section, we describe our proposed online algorithm

CE scheduling to solve our defined problem. The algorithm

is presented in Fig. 2. It schedules jobs one by one in a for

loop. For each job, first it finds out which server is better

by calling function Whos better(). This function considers

the current load on the two servers and the overhead of the

incoming job. Once the better server is known, the algorithm

calls put() function to place the job on the better server. The

details of the two functions are explained below.

Algorithm CE Scheduling

1: Requires: /* server set P ; P1 is the cloud server and P2

is the edge server */

2: Inputs: a set of jobs A = {a1, a2, · · · , an} and their

corresponding overhead O = {o1, o2, · · · , on}
3: Output: a schedule of jobs on the cloud and edge servers

4: for i = 1 : n do

5: /* find which server of P is better*/

6: P better = whos better(P1, P2, ai, oi);
7: put(P better, ai, oi);

8: end for

9: return the schedule on P ;

Fig. 2. The CE Scheduling algorithm

The procedure of function Whos better() is described in

Fig. 3 and the conditions in the function come from the

decision tree in Fig.4. The goal of the decision is to find

out which server, P1 or P2, is better. There are two types of

possible placement of job ai, either on P1 (shown on the

top left in Fig. 4) or P2 (shown on the top right). Since

Function better = Whos better(P1, P2, ai, oi)

1: /* calculate the load on P1 and P2 */

2: s1 = sum(P1); s2 = sum(P2);
3: if s1 + ai + oi > s2 then

4: if s1 > s2 + ai then

5: better = 2;

6: else

7: if s1 + oi <= s2 then

8: better = 1;

9: else

10: better = 2;

11: end if

12: end if

13: else

14: better = 1;

15: end if

Fig. 3. The whos better() function

Fig. 4. Decision tree for whos better()

P1 is the cloud server, we need to add the overhead when

a job is placed on it. P2 is the edge server. We do not

need to consider overhead. Through the comparison of the

loads on the two servers and the makespans of the two

assignments, we identified four cases of conditions and the

corresponding better server shown in the lower part of Fig.

4. The items in shade represent the larger item in each load

comparison. We write up these conditions and put them in

function Whos better().

Function put(server, ai, oi)

1: if server is the cloud server then

2: put ai + oi on the cloud server;

3: else

4: put ai on the edge server;

5: end if

Fig. 5. The put() function

Function put(server, ai, oi) is presented in Fig. 5. It checks

if the server is the cloud server, if so, it adds ai + oi to the

cloud server; otherwise, it adds ai to the edge server.



Next, we calculate the competitive ratio of our proposed

algorithm. We first show that the competitive ratio of our

algorithm cannot be upper bounded by a number less than

2. Then we prove that any other online scheduling algorithm

cannot do better than our proposed algorithm in the worst

case. And finally, we demonstrate that the competitive ratio

of our algorithm is bounded by 2.

Theorem 1: The competitive ratio of CE scheduling cannot

be C
H

C∗
≤ B, where B < 2.

Proof. We use proof by contradiction. Suppose the compet-

itive ratio of CE scheduling is upper bounded by a num-

ber B, which is less than 2. Consider this example: jobs

A = {a, a} and their corresponding overhead O = {ǫ, L},

where ǫ < a, L > a. The schedule from CE scheduling

is: P1 = {} and P2 = {a, a}, which has makespan 2a.

The optimal schedule is: P1 = {a + ǫ} and P2 = {a}.

Its makespan is a + ǫ. The ratio of this example is 2a

a+ǫ
.

According to our assumption, 2a

a+ǫ
≤ B. Now we pick an

ǫ′ less than 2a

B
− a. Because B < 2, a positive ǫ′ exists. That

means there exists an example where jobs A = {a, a} and

the corresponding overhead O = {ǫ′, L}. The ratio of this

example is 2a

a+ǫ′
> 2a

a+ 2a

B

= B. Thus the competitive ratio is

greater than B. This is in conflict with our assumption. So the

competitive ratio of CE scheduling cannot be upper bounded

by a number less than 2. In addition, since there is always

some communication overhead if the job is executed on the

cloud server, so ǫ > 0. Therefore, the competitive ratio of CE

scheduling algorithm is strictly less than 2. �

Next we prove that any other online scheduling algorithm

cannot do better than CE scheduling in the worst case.

Theorem 2: Any online scheduling algorithm cannot do

better than CE scheduling in the worst case.

Proof. We can still use the same example: jobs A = {a, a}
and O = {ǫ, L}, where ǫ < a, L > a. Using CE scheduling,

the best choice for the first a is P2 since it is the edge server

without overhead. For the second a, we will still place it on

P2 because the makespan will be 2a rather than a+L if we

put it on P1, and a+L > 2a as L > a. Since any other online

algorithm schedules jobs one by one and cannot change the

allocation of the previous jobs, it will reach the same schedule

and have makespan 2a in this example. So it cannot do better

than CE scheduling in the worst case. �

Theorem 3: The competitive ratio of heuristic CE schedul-

ing is C
H

C∗
< 2.

Proof. We denote by C∗
i

the optimum solution value for the

job sequence a1, a2, · · · , ai. We will use induction. When

i = 1, the assertion is true. Because both CE scheduling and

the optimal will put the job on P2, resulting a ratio of 1,

which is less than 2. Now let i > 1, and suppose that the

upper bound 2 is valid for all i′ < i. Denote by s1 and s2
the load of P1 and P2, respectively, before assigning job ai.

According to assumption, s1 < 2C∗
i−1 and s2 < 2C∗

i−1.

When a new job ai arrives, CE scheduling puts it on a better

server determined by whos better() function. In the function,

there are four cases. Two of them identify P1 as the better

server and the other two return P2 as better. First, let us look

at the two cases where P2 is better. These two cases are when

s1+ai+oi > s2 && s1 > s2+ai are true and s1+ai+oi >

s2 && s1 ≤ s2 + ai && s1 + oi > s2 are true. After ai is

placed on P2, the load on P2 becomes s2 + ai. We know the

fact that s1 + s2 + ai ≤ 2C∗
i

. If s1 > 0, then s2 + ai < 2C∗
i

.

And if s1 = 0, s2 + ai = C∗
i < 2C∗

i . So s2 + ai < 2C∗
i in

any case. On the other hand, the load on P1 is still s1. By

assumption and a trivial fact, s1 < 2C∗
i−1 ≤ 2C∗

i
. Thus, the

makespan max(s1, s2 + ai) < 2C∗
i . The assertion is true.

Now let us look at the two cases when P1 is better. In the

first case, when s1+ai+oi > s2 && s1 ≤ s2+ai && s1+
oi ≤ s2 are true, job ai is put on P1. Then the load on

P1 becomes s1 + ai + oi. From condition s1 + oi ≤ s2,

we get oi ≤ s2 − s1. So s1 + ai + oi ≤ s1 + ai + s2 −
s1 = s2 + ai < s2 + ai + s1 + oi ≤ 2C∗

i
using the fact

that oi > 0 and s2 + ai + s1 + oi ≤ 2Ci. The load on P2

is still s2, where s2 < 2C∗
i−1 ≤ 2C∗

i
. Thus, the makespan

max(s1 + ai + oi, s2) < 2C∗
i . The assertion is true. In the

second case, when s1+ai+oi ≤ s2 is true, we put job ai on

P1. Then the load on P1 is s1 + ai + oi. From the condition,

assumption, and the trivial fact, we get s1 + ai + oi ≤ s2 <

2C∗
i−1 ≤ 2C∗

i
. The load on P2 is still the same. Again, the

makespan max(s1+ai+oi, s2) < 2C∗
i

. The assertion is true.

After discussing all the cases, we proved the theorem. �

V. SIMULATIONS

In this section, we conduct simulations to validate the com-

petitive ratio of our proposed algorithm using a customized

simulator written in Matlab.

A. Metrics

We use two metrics in our simulations. One is worst ratio,

which is the largest possible ratio of the makespan generated

by the proposed online algorithm in our sample space and

the offline optimal makespan. The other one is the average

ratio, which is the average of all the ratios of the makespans

produced by the online algorithm in our sample space and the

offline optimal makespan. To obtain the optimal makespan in

each data setting, we adopted the brute force method.

B. Experiment 1

In this experiment, we assume that the overhead of a job

is related to its size. We tried five and eight jobs in our

simulation. We randomly generated job sizes in the range

of [1, 200]. For the overhead, we had two categories. In one

category, the overhead of each job is a fraction of the job size.

We varied the fraction from 0.1 to 0.9. In another category, the

overhead of a job is a multiple of the job size. We enumerated

the multiple from 1 to 10. For each parameter setting, we ran

the algorithm 10, 000 times and then output the average and

worst ratios of these samples.

The simulation results with different job numbers and

overhead are shown in Figs. 6 and 7. In each parameter setting

of all of these figures, it is obvious that the worst ratio is

higher than the average ratio. And regardless of the value of

the overhead, these two ratios are upperbounded by 2, which

is consistent with our theoretical analysis.
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Fig. 6. Five jobs, overhead related to job size
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Fig. 7. Eight jobs, overhead related to job size

C. Experiment 2

In this experiment, we assume that the overhead is not

related to job size. We tried job numbers from 5 to 8. We

randomly generated job sizes in the range of [1, 400]. The

overhead of each job is randomly generated in the range of

[1,X], where X starts from 100 to 800 with a step of 100.

For each parameter setting, we ran the algorithm 10, 000 times

and then output the average and worst ratios of these samples.

The simulation results with different job numbers and

overhead are shown in Figs. 8(a)-(d). In each parameter

setting, the worst ratio is higher than the average ratio. And

regardless of the value of the overhead, these two ratios do

not exceed 2, which again matches our theoretical analysis.

From both experiments, we confirm that the competitive

ratio of our proposed algorithm is upper-bounded by 2.

VI. CONCLUSION

In this paper, we have investigated general online schedul-

ing algorithms to place independent jobs on the edge and

cloud servers with the objective to minimize the makespan.

We have proposed the CE scheduling algorithm for two

servers. We have proved that the competitive ratio of the

algorithm is upper-bounded by two and no other online

algorithm can do better than it in the worst case. We have

also conducted extensive simulations to verify the competitive

ratio of our proposed algorithm. Simulation results have

confirmed the correctness of our theoretical analysis. In this

paper, we just discussed the case of two servers. If there are

more than two servers, the competitive ratio of 2 no longer

holds. More detailed analysis will be our future work.
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