
Practical Routing Protocol for Impromptu Mobile
Social Networks

Xiao Chen1, Zhen Jiang 2, Kaiqi Xiong3, Jian Shen4
1Department of Computer Science, Texas State University, San Marcos, TX, USA

2Department of Computer Science, West Chester University of Pennsylvania, West Chester, PA, USA
3College of Computing and Information Sciences, Rochester Institute of Technology, Rochester, NY, USA

4Department of Mathematics, Texas State University, San Marcos, TX, USA
Email: xc10@txstate.edu, zjiang@wcupa.edu, kxxics@rit.edu, js48@txstate.edu

Abstract—With the popularity of mobile devices, mobile social
networks (MSNs) formed by people carrying mobile devices
moving around and contacting each other have become a hot
research topic these days. In this paper, we study a specific
kind of MSNs that is formed impromptu (e.g. when people
carrying mobile devices gather at some social events). We refer
to them as Impromptu Mobile Social Networks (IMSNs). Due
to the dynamic nature of such networks, routing poses special
challenges. The existing social-based MSN routing algorithms
that take advantage of stable social relationships or social features
of people in the network may not be suitable for IMSNs. Thus,
new routing algorithms that can catch node contact behavior
need to be designed for IMSNs. We first propose two statistical-
based theoretical routing algorithms named BerRout and PoiRout
inspired by the node contact models in several papers and then
put forward a practical routing algorithm UpDown which makes
routing decisions based on a simple Counter capturing the ups
and downs of people’s relationships formed in an IMSN. We
compare our algorithms with the existing social-based MSN
routing algorithms by simulations. The results show that the
practical algorithm performs close to the two theoretical ones
and all of our proposed algorithms outperform the existing ones
in terms of performance versus cost in an IMSN environment.

Index Terms—mobile social networks, routing, social analysis,
social features, social network graph

I. INTRODUCTION

Due to the rapid development of mobile devices such
as smartphones, laptops, and PDAs, mobile social networks
(MSNs) [15] formed by people carrying mobile devices mov-
ing around and contacting each other have become a hot
research topic these days. In this paper, we study a specific
kind of MSNs that are formed impromptu, which we refer to as
Impromptu Mobile Social Networks (IMSNs). The IMSNs are
formed in situations, for example, when people carrying mo-
bile devices attend a professional conference, event or festival.
The IMSNs provide lightweight communication mechanisms
that use contact opportunities to allow people to communicate
via local wireless bandwidth such as Bluetooth without a
network infrastructure. The links in IMSNs are time-dependent
and short-term. Thus continuous network connectivity is not
guaranteed, which poses special challenges to routing algo-
rithms in IMSNs. Therefore, nodes in IMSNs communicate
through a store-forward fashion. When two nodes move within
each other’s transmission range, they contact each other and

become neighbors. When they move out of their ranges, their
contact is lost. The message to be delivered need to be stored
in the local buffer until a contact occurs in the next hop.

In the literature, several routing protocols have been devel-
oped for MSNs [2], [8], [12], [19], [20]. A rudimentary yet
costly routing approach in MSNs is to perform a flooding-
based route discovery [19] where a message is spread like
an epidemic of a disease. To reduce cost and improve routing
efficiency, the fundamental idea for a message holder to choose
the next best forwarder in its local neighborhood is to predict
the future meeting probabilities of the candidate nodes with
the destination using the current information known to the
message holder. The node that has the highest probability to
meet the destination will be selected to forward the message.
With the popularity of social networks such as Facebook
[4] and LinkedIn [11], researchers find that the meetings of
people in daily lives exhibit small world phenomenon [13] and
the social relationships of individuals are likely to be long-
term and less volatile than node mobility. Therefore, some
researchers utilize node connections in social network graphs
created by linking nodes with past encounters as the current
information and apply social analysis methods to evaluate
nodes’ centrality to predict nodes’ future meeting probabilities
[2], [8]. The social network graphs can show whether two
nodes have met in the past but not the frequency of the
meetings. To facilitate discussion, we refer to the routing
algorithm that uses this approach as the social-analysis-based
algorithm. Some other researchers use people’s social features
in user profiles as the current information and explore the
similarity of these social features to predict nodes’ future
meeting probabilities [12], [20]. Social features can refer to
an individual’s social attributes such as nationality, language,
affiliation, position, city, and country, etc. The intuition of this
approach is that people having more similar social features
tend to meet more often. We refer to the routing algorithm
based on this approach as the social-feature-based algorithm.

Though the social-analysis-based and the social-feature-
based methods work well in their own MSN scenarios, they
may not be applicable to IMSNs. The social-analysis-based ap-
proach relies on the stability of long-term social relationships
of individuals in daily lives. But in IMSNs, the links between



nodes are established during the time frame of a conference
or other social gathering, which makes node connections to
be short-term and dynamic. Similarly, the social-feature-based
method assumes the stability of node social features and the
consistency of user behavior and their social features. It may
not be a good fit for IMSNs either, because someone who
puts New York as his State in his profile may actually attend
a conference in Texas. His social connections in New York
may not be very helpful in making routing decisions in an
IMSN formed at a Texas conference. Besides, not everyone
participating in an event likes to answer their social feature
questions in their profiles. Therefore, we need to design new
routing algorithms specifically for IMSNs.

In this paper, we explore new routing algorithms for IMSNs
in two steps. First, inspired by the assumptions in several
papers [5], [9], [10] which, in their respectively applications,
assume the meetings of distinct node pairs are independent and
follow a Poisson process in the MSNs which, we think, resem-
ble the IMSNs we discuss in this paper. Using these theoretical
models of how people contact as the current information, we
make our first attempt to put forward two statistical-based
routing algorithms called BerRout based on the assumption
that node meetings are independent and PoiRout based on the
assumption that node meetings follow a Poisson process in
IMSNs. We also prove theoretically that these two algorithms
are related by the Poisson limit theorem [1] when the time
interval is large and the node meeting probability during the
time interval is small.

Next, we propose a practical routing algorithm that makes
routing decisions based on the new information that can
capture the encounters of people as the IMSN is being formed.
As pointed out by [7], it is potentially possible to deliver
information relying only on encounters. Therefore, the new
information should be obtained solely from the encounters of
people in the current IMSN and not the nodes’ previous con-
nections and social features. Furthermore, it should be simple
for the sake of the distributed and dynamic environment. It
should not only reflect the meetings of people but also the
meeting frequency. And it should be time-related so that it
can catch people’s dynamic relationships. By considering all of
these, we propose a practical routing algorithm called UpDown
that uses a Counter which captures the growing and decaying
phases of people’s relationships in the IMSN as the current
information to make routing decisions. More specifically, our
UpDown algorithm maintains an array of Counters for each
node that records the node’s meetings with other nodes. The
encounter of two nodes in a time period will increment their
counters by a certain amount and no encounter in a time period
will decrement their counters by some amount. The amount
to increase or decrease reflects the growing or decaying of
a relationship. When making a routing decision, the message
holder will select a neighbor who has the largest Counter
with the destination. Despite the simplicity of the UpDown
algorithm, it captures the natural social behavior of people:
if people’s relationships grow, they tend to meet more and all
that is recorded by the increment of the Counters. If people’s

relationships decay, they will meet less and all that is recorded
by the decrement of the Counters. The Counter contains the
meeting frequency of nodes which is missing in the social
network graphs of the social-analysis-based algorithm and
does not have the inconsistency problem as in the social-
feature-based algorithm because the Counter reflects people’s
actual meeting behavior.

To evaluate the performance of our UpDown algorithm,
we compare it with the theoretical algorithms BerRout and
PoiRout, the existing social-analysis-based and social-feature-
based algorithms, and with Flooding using a real conference
trace - Infocom06 [16] which represents an IMSN formed at
the Infocom 2006 conference. Simulation results show that our
proposed algorithms can achieve comparable delivery rates as
the optimal case in Flooding but at a much lower cost. The
practical algorithm UpDown is close to the two theoretical
ones, which allows us to discuss its properties theoretically
through the other two if the direct analysis is difficult. All
of our proposed algorithms, namely BerRout, PoiRout and
UpDown, outperform the existing social-based algorithms in
terms of performance versus cost in an IMSN environment.

The rest of the paper is organized as follows: Section II
references the related works; Section III presents our routing
algorithms; Section IV compares our algorithms with the
existing ones using simulations; and conclusion is drawn and
future works are mentioned in Section V.

II. RELATED WORKS

In this section, we introduce the related routing protocols
for MSNs in the literature. These routing protocols, suitable
for their MSN scenarios, use different predictors for a message
holder to locally identify a forwarder which is most likely to
deliver a message to the destination based on the different
information currently available to the message holder.

A. Flooding-based algorithms

A rudimentary routing approach in MSNs is to perform a
flooding-based route discovery as in [19] where the spread of
the message is like the epidemic of a disease. The flooding-
based routing and its derivatives use multiple copies of a
single message to find independent paths to the destination
so as to improve routing efficiency and robustness. However,
flooding has nonneglectable drawbacks [17]: it consumes a
high amount of bandwidth and energy; may result in poor
performance because of high contention for shared resources.
As the average node degree increases, it is not scalable in
memory size needed and number of transmissions performed.

B. Social-based algorithms

As social network applications explode in recent years,
social network graphs that link nodes with past encounters
can be created and analysis of these graphs shows that some
nodes are the common acquaintances of other nodes and act
as communication hubs [14], [18]. Therefore, one promising
way of predicting future contact probability is to analyze
these networks and use metrics such as node centrality to



make forward decisions [2]. To accurately calculate a node’s
centrality in a graph, all nodes are required to have a global
view of the social network, which is difficult and costly to
obtain in a distributed mobile environment. To avoid a global
view, researchers resort to the local view to estimate a node’s
centrality in a graph [5]. Then the routing decision of a
message holder in a social-analysis-based method is made
based on the centralities of the nodes connecting to it in the
social network graph. The neighbor that has the highest cen-
trality will be chosen. The social-analysis-based method relies
on the social network graph which can represent node past
encounters, but the degree of node meeting frequency cannot
be represented. As pointed out by [6], [21], the “static” social
graph has the tradeoff between time-related information lost
and predictive capability. Therefore, the social-analysis-based
method is applicable to MSNs where the social relationships
of individuals are likely to be long-term and less volatile than
node mobility.

Some other works utilize people’s social features in their
user profiles as the current information and compare node
social similarities based on these social features to predict
nodes’ future contact probabilities with the destination to
guide routing [12], [20]. Social features can be a person’s
nationality, language, affiliation, city, state, etc. Researchers
find that individuals with similar social features tend to meet
more often in MSNs. The initial idea of social-feature-based
routing is proposed in [12]. Then the authors in [20] propose
a novel multi-path routing based on the structural property
of hypercubes where each forwarding is guided by reducing
social feature differences between the source and the desti-
nation. In the more detailed implementation of [20], a social
feature vector is attached to each node representing in which
social features it has the same values as D (“1”s are put
in the places of these social features) and in which social
features it has different values from D (“0”s are put in those
places). Destination D’s social feature vector is always set to
(1, 1, 1, 1, 1, 1) if six social features are considered since it is
the target. Suppose the source has a social feature vector of
(1, 0, 0, 0, 0, 0), meaning it only has the same value as D in
the first social feature, e.g. they have the same nationality.
The routing process should find the intermediate nodes that
can resolve the differences in the rest of the five social
features between the source and the destination. So a possible
routing path can be: S(1, 0, 0, 0, 0, 0) → B1(1, 1, 0, 1, 0, 0) →
B2(1, 1, 1, 1, 0, 0) → B3(1, 1, 1, 1, 0, 1) → B4(1, 1, 1, 1, 1, 1).
In each hop, the message is forwarded to some node which
is more socially similar to D by having more common social
features with D. When the message gets to B4 which has
the same values in all of the social features as D, it will
be delivered to D directly when B4 meets D. The social-
feature-based method works well in MSNs where people’s
social features are stable and consistent with their behavior.

III. OUR ROUTING ALGORITHMS

In this section, we first propose two statistical-based routing
algorithms BerRout and PoiRout based on the assumptions

Routing Algorithm Framework

1: Let u1, u2, · · · , uN−1 be nodes in the network, d be the
destination, and Pruid be the probability that node ui

will meet d in the future. The calculations of Pruid in
the BerRout, PoiRout and UpDown algorithms are in
Formulas (6), (3) and (5), respectively.

2: Each node ui has quality which is its Pruid and level τi.
3: INITIALIZE ∀i : τi ← Pruid

4: On contact between message holder ui and node uj :
5: if uj is the destination d then
6: ui forwards the message to uj and the algorithm is

terminated
7: else if τi < Prujd then
8: τi ← Prujd

9: if uj does not have the message then
10: ui forwards the message to uj

11: end if
12: end if

Fig. 1. The routing algorithm framework

of node contact model and then put forward a practical new
routing algorithm UpDown based on node encounters in the
IMSNs. Though these three algorithms use different predictors,
they use the same routing algorithm framework below.

A. Routing Framework of Our Algorithms

Our algorithms BerRout, PoiRout and UpDown use the
same routing framework as shown in Fig. 1 to deliver messages
from a source to a destination. The difference between them
is that they use a different predictor Pruid to make routing
decisions. In the routing framework, we adopt delegation
forwarding [3], which is proved by the authors to bring down
the expected cost of message delivery from O(N) to O(

√
N),

where N is the number of nodes in the network. In delegation
forwarding, each node ui is assigned a quality Pruid which in
our algorithms indicates ui’s probability to meet destination d
in the future based on different predictors, and a level value
τi. Initially, the level of each node is equal to its quality. In
each hop of the delegation forwarding, a message holder ui

only considers forwarding the message to a node uj which
has a higher quality than ui’s level hoping that uj has a better
chance to deliver the message to the destination. At the same
time, node ui improves its level to the quality of uj . In the
rest of the routing process, each message holder does the same
thing until the destination receives the message. The essence of
delegation forwarding is that a copy is transferred to a newly
encountered node if the node is “closer” to the destination
based on a certain predictor than other nodes that the current
node has already met.

B. The BerRout algorithm

Several papers [9], [10] have the assumption that the meet-
ings of two distinct pairs are independent in MSNs. Following
that, the probability of node u meeting node v k times in an
interval t can be expressed as in the Bernoulli experiment:



P{X = k} =
(
t

k

)
pkuv(1− puv)

t−k, k = 0, 1, 2, · · · , t (1)

In the formula, variable X is the meetings of two nodes
u and v. Notation puv (0 ≤ puv ≤ 1) is the frequency of u
meeting v. It can be calculated as the average of the meeting
frequencies in the past intervals. The probability that u does
not meet v in interval t is P{X = 0} = (1 − puv)

t. Then
the probability that u meets v at least once in interval t is:
1−P{X = 0} = 1−(1−puv)t. We can use this formula as the
utility function to predict the future meeting probability Prud
of u and d as shown in Formula (2). We refer to the routing
algorithm using this predictor as the BerRout algorithm as it
is derived from the Bernoulli experiment.

Prud = 1− (1− pud)
t (2)

Since (1 − puv) is between 0 and 1 and when t gets very
large, (1− puv)

t will become 0 due to computation precision.
Thus we cannot differentiate the meeting probabilities of can-
didates. In this case, without affecting the result of comparison,
we can drop 1 and take the ln of the utility function in Formula
(2) and change it to Formula (3).

Prud = −tln(1− pud) (3)

C. The PoiRout algorithm

In [5], the authors formulate the contact process of node
pairs in MSNs as a Poisson process and conducted χ2 tests on
Infocom06 trace. They found that when enough test intervals
(≥ 10) are used, over 85% of the contacted node pairs pass
the test. Following this, the probability that u meets v k times
in interval t can be expressed as:

P{X = k} = λke−λ

k!
(4)

In the formula, variable X is the meetings of two nodes u
and v. Parameter λ = tpuv , where t is the time interval and puv
is the meeting frequency of u and v which can be estimated as
the average of the frequencies in the past intervals. From the
formula, we know that the probability that u does not meet
v is: P{X = 0} = e−λ. Then the probability that u meets
v at least once is: 1 − P{X = 0} = 1 − e−λ. We can use
this formula as the utility function to predict the future meeting
probability Prud of u and d as shown in Formula (5). We refer
to the routing algorithm that uses this predictor as the PoiRout
algorithm as it is derived from the Poisson distribution.

Prud = 1− e−λ (5)

The following theorem shows that the BerRout utility func-
tion in Formula (3) is close to the PoiRout utility function in
Formula (5) if t is large and p is small.

Theorem 1: The BerRout utility function and the PoiRout
utility function are close if t→∞ and p→ 0.

Proof According to the Poisson limit theorem [1], if t →

∞, p → 0 and λ = tp, then
(
t
k

)
pk(1 − p)t−k → λke−λ

k!
. If

k = 0, then (1 − p)t → e−λ. Then the result of Formula (3)
is close to the result of Formula (5). �

In practical calculations, when t ≥ 10, p ≤ 0.1, the results
of Formula (3) and Formula (5) are already very close.

D. The UpDown algorithm

The above two algorithms are based on theoretical assump-
tions about node contact. In this section, we propose a practical
routing algorithm UpDown that uses a Counter to predict the
probability Prud of a node u meeting destination d in the
future. That is,

Prud = Counterud, (6)

where Counterud is the counter based on the times that
u met d during the time intervals we observe. Its detailed
calculation will be explained in the next paragraph. Normally
the probability should be a value in the range of [0, 1]. But for
convenience’s sake, we directly use Counterud to represent
the likelihood of u meeting d in the future without normalizing
it to the [0, 1] range since the higher the Counterud, the higher
the probability they will meet.

The basic idea of the Counter is that when two nodes
meet during an interval, their Counters will be incremented.
If they do not meet during an interval, their Counters will be
decremented. So the Counters will go up and down. Thus we
name our algorithm using the predictor based on the Counters
the UpDown algorithm. The detailed Counter calculation is
shown in Fig. 2. More specifically, first, time is divided into
equal length intervals t which is initialized to 1 and keeps
incrementing as long as the algorithm does not terminate.
Every node has an array of Counters that records its meetings
with other nodes. When node u meets node v for the first time,
it will set up a new Counteruv with v. If u and v continue
meeting each other in the next few intervals, their counters will
be incremented by f(α, t1) = αt1 (t1 ≥ 1), where α (> 1) is
the value incremented and t1 is the number of time intervals
they continue meeting. Function f(α, t1) is increasing with
the increment of t1 and α > 1. The intuition is that if two
nodes meet continuously, the increment to their counters will
be larger and larger, meaning that they are more and more
likely to meet in the future. On the other hand, if u and v
do not meet in the next few intervals, their counters will be
decremented by f(β, t2) = βt2 (t2 ≥ 1), where β (> 1) is the
value decremented and t2 is the number of time intervals they
discontinue to meet. f(β, t2) is also an increasing function
with the increment of t2 and β > 1. The intuition is that
if two nodes do not meet in the next several intervals, the
decrement to their counters will be larger and larger, meaning
that it is less and less likely for them to meet in the future.
The counters of u and v will be updated like this until the
counters are below a defined low threshold (LTH), indicating



The Counter calculation in the UpDown algorithm

1: If u meets v for the first time, initialize nodes u and
v’s counters Counteruv and Countervu to 0; Initialize
interval t = 1.

2: repeat
3: t1 = 1;
4: while u and v meet in interval t do
5: Counteruv+ = αt1 ; Countervu+ = αt1 ;
6: t1 ++; t++;
7: end while
8: t2 = 1;
9: while u and v do not meet in interval t do

10: Counteruv− = βt2 ; Countervu− = βt2 ;
11: t2 ++; t++;
12: end while
13: until Counteruv < LTH
14: u and v remove each other’s counters from their records.
Fig. 2. The Counter calculation in the UpDown algorithm. Parameter t1
is the number of time intervals u and v continue meeting each other and t2
is the number of time intervals they discontinue to meet. LTH means low
threshold.

1 2 3 4 5 6 7 8 9 10

uv uv uv uv uv

Time

Fig. 3. The meeting history of nodes u and v in 10 time intervals

that they will not likely meet again in the future. Then u and
v can remove each other’s counters from their records.

Let us look at an example of how Counters are calculated.
Suppose the meetings of u and v are shown in Fig. 3. The
numbers 1, 2 · · · 10 represent the 10 time intervals in the
history we observe. The appearance of uv in an interval means
that they met in that interval. As we can see, they start to meet
each other in interval 1. They set up Counteruv (Countervu)
for each other. The values of their counters in the next 10
intervals are shown in Table I.

IV. SIMULATIONS

We compared our algorithms with the existing social-based
algorithms using a self-written simulator in Matlab. Flooding
was included as a benchmark. To fit the legend in each figure,
we attached a short name beside each algorithm.

1) The Flooding Algorithm (Flooding) [19]
2) The Social-analysis-based Algorithm (Analysis) [5]
3) The Social-Feature-based Algorithm (Feature) [20]
4) The UpDown Routing Algorithm (UpDown)
5) The Bernoulli-based Routing Algorithm (BerRout)
6) The Poisson-based Routing Algorithm (PoiRout)
The Feature algorithm takes the idea from [20] and converts

it into a single-copy scheme for fair comparison where routing
is guided by resolving social feature differences between a
source and a destination.

In the Analysis algorithm, to calculate centrality locally in a
distributed environment, we adopt the centrality metric in [5]

as a utility function to predict the future contact probability
of a node u based on its local contacts with its neighbors.

Pru = 1− 1

N − 1

∑
allv,v ̸=u

e−λuvt (7)

N is the total number of nodes in the network. λuv is the
meeting frequency of nodes u and v. Pru indicates the average
probability that a randomly chosen node v in the network is
contacted by u within time t.

To compare the performance of these algorithms, we used
a real-life trace - Infocom06 trace [16], which has recorded
conference attenders’ contact history in an IMSN using Blue-
tooth devices (iMotes) for three days at IEEE Infocom 2006
in Miami. The trace data set consists of two parts: contacts
between the iMote devices that are carried by participants and
social features of the participants, which are the statistics of
participants’ information from a questionnaire form. Six social
features are extracted from the data set: nationality, language,
affiliation, position, city, and country.

We define three important performance metrics to evaluate
algorithms:

1) delivery rate: the fraction of generated messages that are
correctly delivered to the destination within a given time
period.

2) number of forwardings: the number of forwardings
needed to successfully deliver a packet.

3) delivery latency: the time between when a message is
generated and when it is received.

We have the following settings for the algorithms we
compare. For the Feature algorithm, in the Infocom06 trace
we study, we found that 17 out of 79 iMotes carried by people
have no or partial social features, which excludes them from
being used in the social-feature-based routing. Thus, the actual
number of iMotes used was 62. For the UpDown, BerRout,
and PoiRout algorithms, we used the past 5000 length of
history divided up into 5 intervals to predict the future meeting
probabilities of nodes. In the UpDown algorithm, α and β
can take any values greater than one. We set α to 6 and β
to 2 to favor nodes’ meetings. We randomly generated 100
to 500 source-destination pairs to send packets. To compare
fairly, the same source-destination pairs were applied to all
of the algorithms. And to avoid 100% delivery rate of the
algorithms, the time-to-live of all of the packets (except for
those created in the Flooding simulation) was set to 9, meaning
that a given packet can be transferred at most nine times. The
three performance metrics were calculated and averaged.

The simulation results are shown in Fig. 4. In the exper-
iment, the delivery rates of all of the algorithms with node
numbers from 100 to 500 are above 80% (see Fig. 4(a)).
Flooding has the highest delivery rate and Feature has the
lowest. Analysis has an up to 5% improvement in delivery
rate than UpDown, BerRout and PoiRout but at the cost of
about 3 times their forwardings as shown in Fig. 4(b). As
expected, Flooding has the highest number of forwardings
since it spreads copies epidemically. Feature also has higher
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THE VALUES OF COUNTERS
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Fig. 4. Comparison of UpDown, BerRout, PoiRout with Flooding and Social algorithms

forwardings than UpDown, BerRout and PoiRout. In terms of
latency (see Fig. 4(c)), Flooding has the lowest because of
its epidemic nature. Feature has the highest latency followed
by Analysis and then the three proposed ones. In short, in
terms of performance versus cost, our proposed algorithms
UpDown, BerRout and PoiRout are better than the existing
social-analysis-based and social-feature-based algorithms.

In all of the three metrics, algorithms UpDown, BerRout,
and PoiRout have similar results. There is no doubt about the
similarity between BerRout and PoiRout as they are related
by the Poisson limit theorem when we looked at a long time
interval (5000) and the probability of two nodes meeting each
other is less than 0.1 according to the trace. We want to
find out why UpDown also has similar results as them. We
compared the path similarity of the three algorithms. Using the
UpDown algorithm as a benchmark, we found that over 98%
of the paths selected by the BerRout and PoiRout algorithms
to send a message from a source to a destination are the
same as those selected by the UpDown algorithm (see Fig.
5 (a)). It is hard to find a mathematical relationship between
UpDown and BerRout or PoiRout as they have so different
utility functions. Therefore, we resorted to simulations to study
their relationships. We randomly generated contact histories of
two candidate nodes, say u and v, in the past 5000 time units
and applied the utility functions of the three algorithms. We

ran the program 100, 1k, 10k and 100k times. Again using
UpDown as a benchmark, we found that over 94% of the time,
the utility functions of BerRout and PoiRout chose the same
candidate as that of UpDown (see Fig. 5 (b)). Though without
mathematical support yet, their utility functions give consistent
results in choosing the same candidates most of the time. That
explains the similarity in the selected paths and therefore the
similarity in the performance of the three algorithms.

In conclusion, the practical algorithm UpDown is a better
algorithm for IMSNs than the existing social-analysis-based
and social-feature-based algorithms. In a dynamic and dis-
tributed network formed impromptu, the previous connections
in social network graphs and the social features in user profiles
cannot provide much help in making right routing decisions
as can be inferred from the simulation results. Routing in
IMSNs needs to be based on information collected right
there as the network is being formed. UpDown is such an
algorithm that is simple and only relies on the information
of node encounters gathered in IMSNs. The node encounter
information not only reflects the meetings of people but also
their meeting frequency that is missing in the social-analysis-
based algorithm. It is time dependent in that it catches the
growing and decaying of people’s relationships as time goes
on, thereby it can catch node contact behavior more accurately
than the static information in the social network graphs and
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in the user profiles. This result confirms the claim by [7] that
it is potentially possible to deliver information relying only
on encounters. The two statistical-based theoretical routing
algorithms BerRout and PoiRout also beat the social-based
ones, indicating that the node contact patterns they assume
are reasonable in the trace we use. The similar performance
of UpDown to the two theoretical ones allows us to discuss
the properties of UpDown theoretically through them if the
direct analysis is difficult.

V. CONCLUSION

In this paper, we designed a practical routing algorithm
specifically for IMSNs where node connections are time-
dependent and short-term. We first proposed two statistical-
based theoretical routing algorithms named BerRout and
PoiRout inspired by the node contact models in several papers
and then put forward a practical routing algorithm UpDown
which makes routing decisions based on a simple Counter
capturing the ups and downs of people’s relationships formed
in an IMSN. We compared our algorithms with the existing
social-based algorithms by simulations. The results showed
that the practical algorithm performed close to the two theo-
retical ones and all of our proposed algorithms outperformed
the existing ones in terms of performance versus cost in
an IMSN environment. In the future, we will explore more
accurate models to describe social interactions of people to

guide message delivery in IMSNs and use data sets from
various sources to further validate our results.
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