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Abstract—Recently self-driving vehicles have attracted tremen-

dous attention from all walks of life. A problem facing self-driving

vehicles is when to stop for gas. In this paper, we study the

autonomous refueling strategies using vehicle-to-infrastructure

communication in smart cities. We set three goals for our

strategies: not to stop too late, nor too early, and get relatively

cheap gas. To satisfy these goals, we relate our problem to the

Gusein-Zade’s version of the secretary problem and provide a

solution framework where we divide the distance a vehicle can

travel from a full tank to an empty tank into Density Observation

Section, Secretary Section, and the Critical Section. To predict the

number of gas stations a vehicle will encounter in the future, we

use the Constant Density Approximation (CDA) method and the

Machine Learning (ML) method. Simulation results comparing

the proposed CDA and ML algorithms with the ground truth

algorithm show that both perform nearly as well as the ground

truth in satisfying all three goals.

Index Terms—secretary problem, self-driving vehicle, smart

city, stopping rule, V2I

I. INTRODUCTION

Recently self-driving vehicles have attracted tremendous

attention from all walks of life. They are part of the smart

transportation in smart cities [6]. In self-driving vehicles, the

driver hands over control to the vehicle and is no longer

responsible for monitoring the system and handling the sit-

uations that may occur on the road. To make self-driving

vehicles feasible, a vehicular network is required to let moving

vehicles, road side units (RSUs), and pedestrians that carry

communication devices communicate with each other. Among

these, the communication between the vehicle and RSUs uses

vehicle-to-infrastructure (V2I) [11] technologies. The tech-

nologies capture vehicle-generated traffic data and wirelessly

provide information from the RSUs to the vehicle to inform it

of safety, mobility, gas price, or other related information.

In this paper, we will work on a problem essential to self-

driving vehicles using V2I that, to our best knowledge, has not

been discussed before. It is the Autonomous Vehicle Refueling

(AVR) problem. When a self-driving vehicle is low on gas, it

needs to decide where to stop for gas. We assume that in a

smart infrastructure, an RSU is deployed at each gas station

to broadcast gas price to the passing vehicles. In each vehicle,

an On Board Unit (OBU) is installed to receive gas prices

from RSUs. Both RSU and OBU are dedicated short-range

communication (DSRC) devices. DSRC works in 5.9 GHz

Fig. 1. RSUs at gas stations sending gas prices to OBUs in vehicles

band with bandwidth of 75 MHz and has an approximate range

of 300m [2]. The context of our problem is depicted in Fig. 1.

In the AVR problem, we want to achieve three goals ranked

by their priorities from high to low. First, we do not want to

stop too late when the vehicle is out of gas and the driver is

stranded on the road. Second, we do not want to stop too early

either with a large amount of gas in the tank. And third, we

hope to add gas at a station that offers a relatively low price.

To provide a holistic solution to the AVR problem, we

will address the third goal first and then the other two can

be dealt with accordingly. We relate our third goal to the

Gusein-Zade’s version [9] of the classic secretary problem [4],

where a stopping rule is present to select one of the r best

secretaries out of n rankable applicants arrived in random order

with the maximum probability. Our third goal resembles the

Gusein-Zade’s version because we need a stopping rule to

maximize the probability to get a gas price which is among

the lowest few. But also at the same time, our third goal is

different from the secretary problem in that the number of

gas stations k a vehicle will encounter ahead is not known

while the number of coming applicants n in the secretary

problem is fixed and known. So we need a way to predict

the number of gas stations ahead. Our method is to use the

gas station information that a vehicle has already collected

as it drives on the highway to predict the number of gas

stations a vehicle will see in the future. After having the



idea for the third goal, we provide a solution framework for

the vehicle to decide where to add gas satisfying all three

goals. In the framework, we divide the distance a vehicle can

travel from a full tank to an empty tank into three sections:

Density Observation Section, Secretary Section, and Critical

Section. The purpose of the Density Observation Section is to

watch the frequency and distribution of gas stations the vehicle

passes and predict the number of gas stations k in the future

sections. We propose two prediction methods, one is called

Constant Density Approximation (CDA) and the other is based

on a Machine Learning (ML) model. Another purpose of the

Density Observation Section is to prevent the vehicle from

stopping too early. In the Secretary Section, we will use the

Gusein-Zade’s stopping rule to stop at the gas station with a

relatively low price. Finally, the role of the Critical Section is

to prevent the vehicle from running out of gas. If the vehicle

does not find a gas station in the Secretary Section, then it is

critically low on gas and must add gas at the first gas station

in the Critical Section. We evaluate the effectiveness of the

proposed CDA and ML strategies by comparing them with the

ground truth algorithm using simulations. Simulation results

show that both perform nearly as well as the ground truth in

satisfying all three goals.

The key contributions of our work are as follows:

• We are the first to discuss autonomous vehicle refueling

(AVR) problem using V2I to the best of our knowledge.

• We relate our problem to the Gusein-Zade’s version of

the classic secretary problem and propose a solution

framework to solve the AVR problem.

• We demonstrate the effectiveness of our strategies by

simulations.

The rest of the paper is organized as follows: Section II

references the related work; Section III defines the problem;

Section IV describes our solution; Section V presents the

simulations; and Section VI is the conclusion.

II. RELATED WORK

The following two problems are related to our defined AVR

problem.

A. Classic Secretary Problem

In the classic secretary problem (CSP) [4], a decision maker

(DM) wants to hire the best secretary out of n rankable

applicants for a position. The applicants are interviewed one

by one in a random order. When the DM interviews the jth

applicant in the sequence, she gains information sufficient to

rank the applicant among all applicants interviewed so far, but

is unaware of the quality of yet unseen applicants. Her objective

is to find an optimal strategy or the stopping rule to maximize

the probability of selecting the best applicant.

The problem has an elegant solution and the optimal search

policy is to interview and reject the first n
e

applicants and then

to accept the first one thereafter with a relative rank of 1 [8].

In n
e

, e is the base of the natural logarithm, and the optimal

policy selects the best applicant with probability 1

e
≈ 0.3679

as n→∞.

B. Gusein-Zade’s Version of the Secretary Problem

In the Gusein-Zade’s version of the secretary problem, the

goal is to find the optimal stopping rule to select one of the

best r candidates out of n applicants, not necessary the best

one as in the CSP. This problem was first studied by Gusein-

Zade [9] and then further studied by Frank and Samuels [7].

In [7], the authors give the stopping rule and the complete

limiting form of the optimal stopping rule for each r up to

r = 10, and for r = 15, 20 and 25. They show that, for large

n and r, the optimal risk of not selecting one of the r best is

approximately (1 − t∗)r, where t∗ ≈ 0.2834 obtained as the

root of a function which is the solution to a certain differential

equation. Our problem is similar to this version and we will

use their calculated results in the stopping rule to decide when

to stop for gas in our solution framework.

III. PROBLEM STATEMENT

In this section, we define the problem we want to solve. We

assume in a smart city, a self-driving vehicle is driving on the

highway. When it comes close to a gas station, the OBU in

the vehicle and the RSU at the gas station can communicate

with each other and the gas price at the gas station can be

transmitted to the vehicle.

We have the following assumptions:

1) A vehicle can observe sequentially a list of gas prices

offered by the gas stations as it drives by on the highway.

2) For each gas station j, the vehicle can only ascertain the

relative rank of the gas station relative to the previous

j − 1 viewed gas stations.

3) Once the vehicle passes a gas station, it cannot later come

back.

We call our defined problem the Autonomous Vehicle Re-

fueling (AVR) problem, whose objective is to find the best

autonomous refueling strategy to satisfy the following three

goals with priorities from high to low:

1) A vehicle should not run out of gas

2) A vehicle does not stop for gas too early

3) A vehicle should stop at a gas station with a relatively

low price

These three conditions are chosen and given their respective

priorities because this is generally how people decide when

to stop for gas. People do not want to add gas too late to be

stranded on the road. People do not want to add gas too early

either with a lot of gas still left in the tank. Furthermore, they

want to get a relatively low gas price.

IV. OUR SOLUTION

In this section, we provide a solution framework in Fig. 3 to

find the gas station for gas. In the framework, there are three

parts which correspond to the three sections (shown in Fig. 2)

that a vehicle will drive through from a full tank to an empty

tank.

1) Density Observation Section

2) Secretary Section

3) Critical Section



Fig. 2. Three sections of the total distance a vehicle can drive

In the framework in Fig. 3, lines 4 through 6 cover the Den-

sity Observation Section. In this section, the vehicle will simply

watch the frequency and distribution of gas stations it passes.

This information will later be used to predict the number of

gas stations, k, that the vehicle will pass in the future sections

which include the Secretary Section and the Critical Section.

The prediction can be done with either the Constant Density

Approximation (CDA) (Fig. 4) or the Machine Learning (ML)

(Fig. 5) method explained in the next subsections.

The Secretary Section is found on lines 8 through 10. Here,

we use the stopping rule stated in subsection IV-C to determine

the station for gas. If such a gas station is not found, the vehicle

keeps driving.

Finally, if the vehicle does not stop in the Secretary Section,

it is now considered to be critically low on gas and will stop at

the first gas station in the Critical Section. The Critical Section

can be found on lines 12 through 15. The purpose of this

section is to prevent the vehicle from running out of gas.

In the next few subsections, we will give the details of the

prediction methods of k and the stopping rule.

A. Predicting k using Constant Density Approximation (CDA)

Fig. 4 gives the algorithm of predicting the number of gas

stations k in the future sections (including the Secretary Section

and the Critical Section) of the highway using Constant Density

Approximation. The main premise behind the algorithm can be

seen in line 8 of Fig. 4. Since we do not know the distribution

of the gas stations, a reasonable assumption is that a gas station

can appear at any location along the highway with the same

probability. Then the density of the gas stations in the future

sections is the same as the density in the Density Observation

Section. So the number of gas stations we will see in the future

sections is equal to the number of gas stations in the Density

Observation Section times the total length of the future sections

(Secretary Section and Critical Section) divided by the length

of the Density Observation Section.

B. Predicting k using Machine Learning (ML)

The general premise behind the Machine Learning k-

prediction method shown in Fig. 5 is to divide the Density

Observation Section into ten segments and whose gas station

numbers will be used as inputs for the machine learning model.

We decide to divide the Density Observation Section into

segments so that the machine learning model will be able

to account for the distribution of the gas stations along the

highway. The 11th and last input into the model is the total

distance the vehicle can drive. To improve the accuracy of the

model, we standardize the inputs that we train on. For this

reason, the average and standard deviation of the test data must

be included as a part of the given model. The inputs are then

Solution Framework to the AVR Problem

1: Inputs: the total mileage Total Mileage a vehicle can

drive from a full tank until empty, the distance driven so

far Driven Mileage, the length of the density observation

section Observation Length, the length of the Secretary

Section Secretary Length
2: Output: the gas station j where the vehicle stops for gas

3: // Density Observation Section

4: while Driven Mileage < Observation Length do

5: Keep driving and observe the number of the gas stations

along the way to predict the number of gas stations k in

the future sections which include the Secretary and the

Critical Sections. Value k will be predicted using either

the algorithm in Fig. 4 or Fig. 5

6: end while

7: // Secretary Section

8: while Driven Mileage < (Secretary Length +
Observation Length) do

9: Keep driving and for every passing gas station, use the

stopping rule stated in subsection IV-C to find a gas

station j for gas. If j exists, stop and add gas; if not,

keep driving.

10: end while

11: // Critical Section

12: while Driven Mileage < Total Mileage do

13: Keep driving until you hit a gas station j
14: Stop and add gas at station j
15: end while

16: If you reach this point without finding a gas station j, then

you have run out of gas

Fig. 3. Our solution framework to the AVR problem.

Constant Density Approximation (CDA) Prediction

1: Inputs: the distance driven so far Driven Mileage,

the length of the Density Observation Section

Observation Length, the length of the Secretary

Section Secretary Length, and the length of the Critical

Section Critical Length.

2: Output: a number k that is an approximation of the

number of gas stations in the Secretary Section and the

Critical Section

3: gas stations passed← 0
4: while Driven Mileage < Observation Length do

5: Drive to the next gas station

6: gas stations passed← gas stations passed+ 1
7: end while

8: k ← (gas stations passed) ∗ (Secretary Length +
Critical Length) / (Observation Length)

9: return k

Fig. 4. Predicting k gas stations in the future sections of the highway by
assuming a constant density of gas stations on the highway.



Machine Learning (ML) Prediction

1: Inputs: the total mileage Total Mileage a vehicle can

drive from a full tank until empty, the distance driven so

far Driven Mileage, the length of the Density Observa-

tion Section Observation Length, the machine learning

model given by: A a 1x11 vector, b a scalar bias, Avg a

1x11 vector of input averages, and Dev a 1x11 vector of

input standard deviations

2: Output: a number k that is an approximation of the

number of gas stations in the Secretary Section and the

Critical Section

3: segment length← Observation Length/10
4: for segment i = 1..10 in Observation Length do

5: gas stations[i] ← number of gas stations passed in

segment i
6: end for

7: Inputs ← [gas stations[1], . . . , gas stations[10],
T otal Mileage]

8: for i=1..11 do

9: Std Inputs[i]← (Inputs[i]−Avg[i])/Dev[i]
10: end for

11: k ← A ∗ Std Inputs′ + b
12: return k

Fig. 5. Predicting k gas stations in the future sections of the highway by
machine learning method

r j tj(r)
1 1 0.3679

...

3 1 0.3367

2 0.5868

3 0.7746

TABLE I
SAMPLE ASYMPTOTIC FORM OF THE OPTIMAL STOPPING RULES

adjusted by the same average and standard deviation as the

training data to produce the prediction for k.

The weights in the model, A and b, are found by training

the model using TensorFlow [5]. The general procedure when

training the model is to initially set these weights to random

values and then slowly modify them to improve the accuracy

of the prediction. When training the model used in our sim-

ulations, we use Elastic Net Regression and the loss function

described by McClure [10].

C. Stopping Rule

In their paper [7] on the Gusein-Zade’s version of the

secretary problem, Frank and Samuels stated the stopping rule

to get one of the best r individuals as “select arrival of relative

rank j only after tj(r) · n previous arrivals”. The authors also

calculated the values of tj(r) for different values of r and j
after solving a differential equation. We therefore can directly

use the tj(r) values from their paper. Here, Table I shows some

sample values and we will use them to interpret the meaning

of the stopping rule.

According to Table I, if r = 1, this is the classic secretary

problem and the special case of the Gusein-Zade’s version. In

this case, you only select the best individual. So the relative

rank j can only be 1. The stopping rule is to pass the first

0.3679 · n candidates and then pick the next candidate (with

a relative rank 1) who is better than all the previous ones. If

r = 3, the relative rank j can be 1, 2, and 3. Then the stopping

rule is: after you pass the first 0.3367 · n candidates, you can

pick the next candidate with a relative rank j = 1. If you do

not get anyone, you can pick the next candidate with a relative

rank j ≤ 2 after you pass the first 0.5868 ·n candidates. And if

you still do not get one, you can pick the next candidate with a

relative rank j ≤ 3 after you pass the first 0.7746·n candidates.

Now we can see from the stopping rule that, as you continue

searching, you will consider people with a lower relative rank

to increase the chance of getting one of the r best candidates.

V. SIMULATIONS

In this section, we evaluate the effectiveness of our algo-

rithms by comparing them with the ground truth algorithm

using a customized simulator written in MatLab and Python.

A. Data Collection

Since there is no existing data for our needs to the best of our

knowledge, we explored several methods of retrieving real-life

gas station data. In our collection, the locations and rates of

gas stations which are less than 300 meters away from the path

a vehicle would travel were recorded. First, manual collection

was done by using GasBuddy [3], a website which displays gas

station locations and prices based on location or along a given

route. We used GasBuddy’s ‘Plan Your Trip’ option with ‘mile

per gallon’ setting to 0.5 miles a gallon tank on a one way

trip. This effectively captures gas station information every 0.5
miles along a route. We selected routes in between 300 and 500
miles to represent how far a vehicle could drive on a full tank

of gas. After setting these configurations, a route is calculated

and station information is displayed on the screen. We used a

Python script which utilizes Beautiful Soup [1], a library for

web scraping, to pull gas station rates and locations. With these

data, we obtained 151 routes across the United States to test our

refueling algorithms. These routes were captured as matrices

in Matlab with each index representing a unit distance and the

element in each index being the price of gas at that location.

A value of zero was used if no gas station was present. It

should be noted that GasBuddy routes do no perfectly capture

the frequency of gas stations along every route. We found that

certain locations along our generated routes would show no

stations when in reality there were plenty. Because we found

no suitable alternative, we accept that our routes are more

conservative than reality.

B. Algorithms Compared

We compared the following algorithms.

1) Constant Density Approximation (CDA): where k is

predicted by assuming the density of the gas stations to

be nearly a constant.

2) Machine Learning (ML): where k is predicted based on

Machine Learning.



3) Ground Truth (GT): where the actual number of gas

stations in the future sections is known.

In the above algorithms, the CDA and ML methods use the

same framework in Fig. 3. The GT method also follows the

same framework except that it replaces the Critical Section

part with the last gas station. This is because we know from

the ground truth where the last gas station is. So if the stopping

rule does not return any gas station for the vehicle to stop

earlier, we will stop to add gas at the last gas station in GT.

C. Metrics

The quality of the comparing algorithms is evaluated by the

following three metrics that correspond to our three goals.

1) The probability of running out of gas

2) The percentage of the gas left in the tank when refueling

3) The probability of getting cheap gas

Here, a cheap gas price is defined as the price which is less

than 80% of all the gas prices along the route.

D. Setting

In our simulations, we set the start of the Secretary Section

from 0.4 to 0.70 of the total distance a vehicle could travel

from a full tank to an empty tank. We set the start of the

Critical Section to be 75% and 82% of the whole route. If the

start of the Critical Section exceeds 82%, we will start to see

vehicle running out of gas based on our data. So we do not

want to go beyond that. Using the 151 routes collected from

GasBuddy.com, we calculated the average of the three metrics.

E. Results

The simulation results are presented in Figs. 6 and 7. We

can see that both CDA and ML performed nearly as well as

GT by all three metrics. More specifically, setting the correct

starting point of the Critical Section is crucial to avoid the risk

of running out of gas. In our data, setting the starting point

to be no more than 82% of the whole route allows all three

algorithms to have a zero chance of being out of gas. The

GT method has the least amount of gas left in the tank when

the vehicle stops for gas and the highest probability of getting

cheap gas. The ML method has more gas left in the tank than

the CDA method, but has a little higher chance of getting a

lower gas price. In terms of the cost effectiveness, we would

say that the CDA method is better because of its simplicity and

good performance.

VI. CONCLUSION

In this paper, we have discussed the autonomous vehicle

refueling strategies using vehicle-to-infrastructure communica-

tion in smart cities. We have set three goals for our strategies:

not to stop too late nor too early, and get relatively cheap

gas. To satisfy the goals, we have related our problem to the

Gusein-Zade’s version of the secretary problem and provided a

solution framework where we have divided the route a vehicle

can travel from a full tank to an empty tank into Density

Observation Section, Secretary Section, and the Critical Sec-

tion. To predict the number of gas stations a vehicle would
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Fig. 6. Comparison of proposed strategies against ground truth, with the
Critical Section starting from 75% of the whole route.
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Fig. 7. Comparison of proposed strategies against ground truth, with the
Critical Section starting from 82% of the whole route.

encounter in the future, we have used the Constant Density

Approximation (CDA) method and the Machine Learning (ML)

method. Simulation results comparing the proposed algorithms

with the ground truth algorithm have shown that both CDA

and ML have performed nearly as well as the ground truth in

satisfying all three goals. In this paper, the advantage of the

ML method is not obvious comparing with the simple CDA

method. One direction we can explore in the future is to obtain

more real-life data to train the ML model.
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