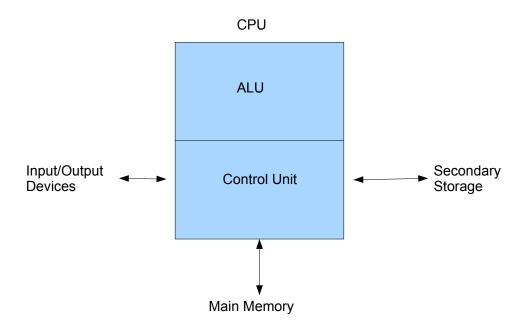
Ch 1: Intro to Computers and Programming

CS 1428 Fall 2011

Jill Seaman

Lecture 1


Computer Systems

- Hardware Devices
- Software Components

Hardware

- Central Processing Unit (CPU)
 - Arithmetic Logic Unit (math, comparisons, etc)
 - Control Unit (processes instructions)
- Main Memory (RAM): Fast, expensive, volatile
- Secondary Storage: Slow, cheap, long-lasting
- Input Devices: keyboard, mouse, camera
- Output Devices: screen, printer, speakers

Organization of Hardware

Software

- Programs that run on the hardware
- Operating Systems:
 - Let user operate hardware and run apps, manage environment
 - Unix, MS-DOS, Linux
 - Windows, Mac OS X
- Application Programs (Apps):
 - Solve specific problems for user
 - Word, Excel, iTunes, Firefox, Angry Birds, Outlook

What is a Program?

- Set of instructions to perform a specific task (an Algorithm)
- Runs on a computer

Example (algorithm)

- 1. Display on screen: "how many hours did you work?"
- 2. Wait for user to enter number, store in memory
- 3. Display on screen: "what is your pay rate (per hour)?"
- 4. Wait for user to enter rate, store in memory
- 5. Multiply hours by rate, store in memory
- 6. Display on screen: "you have earned \$xx.xx" where xx.xx is result of previous step

Note: Computer does not speak English

Programming Languages

- Machine Language:
 - Instructions are Sequence of 1's and 0's
 - Machine specific
- Low Level Languages: Assembly Language
 - Letters and digits
 - Direct correspondence to Machine Language
- High Level Languages:
 - Words, symbols, numbers
 - Easier for humans to read and use
 - Must be translated to Machine Code

Translation Process

Source Code File \rightarrow [Preprocessor] \rightarrow Modified Source Code \rightarrow [Compiler] \rightarrow

Object Code \rightarrow [Linker] \rightarrow

Executable Code File

Usually don't see intermediate files

Using an "Integrated Development Environment" (like Eclipse) you may only see the source, and result of running the executable file.

```
#include <iostream>
using namespace std;
```

```
int main()
```

{

double hours, rate, pay;

// Get the number of hours worked cout << "How many hours did you work? "; cin >> hours;

```
// Get the hourly pay rate
cout << "How much do you get paid per hour? ";
cin >> rate;
```

```
// Calculate the pay pay = hours * rate;
```

```
// Display the pay
cout << "You have earned $" << pay << endl;</pre>
```

```
return 0;
}
```

Language Elements

- •Key Words
- •Programmer Defined Identifiers
- •Operators
- Punctuation
- Statement
- Variables
- Variable Definition

Language Elements

- Key Words: have special meaning (lowercase)
- Programmer Defined Identifiers: names made by programmer
- Operators: instruction to manipulate data
- Punctuation: special meaning to compiler
- Statement: complete instruction to computer
- Variables: named storage location
- Variable Definition:
 - instruction to set up variable
 - requires data type information (number, character)

Categories of Instructions

- Input
 - cin >> hours
 - gathers info from "outside world"
- Processing
 - pay = hours * rate;
 - computation
- Output
 - cout << "How many hours did you work? ";</p>
 - sends info to "outside world"

Programming Process

- 1.Clearly define the problem
- 2. Visualize output of program
- 3. Make a model of the program
 - · hierarchy chart
 - · flowcharts
 - \cdot pseudocode
- 4. Translate to C++ code (type it into a file)
- 5. Compile, fix syntax errors, repeat
- 6.Test the program (execute it with data)
- 7.Correct errors, go to step 5. If no errors, quit.

What is Software Engineering?

Entire process of developing and maintaining computer software

- Designing
- Writing Code
- Testing
- Debugging
- Documenting
- Modifying (updating)
- Maintaining (fixing bugs reported by users)