
1

Ch 5. Looping
Part 1

CS 1428
Fall 2011

Jill Seaman

Lecture 12

2

Control Flow
 So far, control flow in our programs has

included:
− sequential processing (stmnts done in order)
− branching (conditionally skip some statements)

 Chapter 5 introduces loops, which allow us to
conditionally repeat execution of a set of
statements.

− while loop
− do-while loop
− for loop

3

The while loop

 The statement is repeated as long as the
relational expression is true.

relational
expression statement

True

False

4

while

 the while statement is used to repeat statements

 expression is evaluated:
− If it is true, then statement is executed, and

expression is re-evaluated
− If/when it is false, then statement is skipped,

and the loop is exited.

while (expression)
 statement

5

while example

 Example:

 Output:

int number = 1;

while (number <= 3)
{
 cout << “Student” << number << endl;
 number = number + 1;
}

cout << “Done” << endl;

Student1
Student2
Student3
Done

6

while structure

 Notice:

 relational expression in parentheses.
 NO semi-colon after relational expression.
 Good style: indent the statements in the body.
 The body can be a block.
 The body can be one statement.

while (number <= 3)
{
 cout << “Student” << number << endl;
 number = number + 1;
}

7

Watch out

 What is output?

 If the condition is false the first time, the body is
NEVER executed.

int x = 13;

while (x <= 10) {
 cout << “Repeat!” << endl;
 x = x + 1;
}

cout << “Done!” << endl;

8

Watch out

 What is output?

 Something inside the body must eventually
make the condition false.

 If not, you have an infinite loop.
- try ctrl-c to exit

int x = 1;

while (x <= 10)
 cout << “Repeat!” << endl;

cout << “Done!” << endl;

9

Watch out

 What is output?

 Don’t forget the braces!!
 Another watchout:

- don’t use = for ==

int x = 1;

while (x <= 10)
 cout << “Repeat!” << endl;
 x = x + 1;

cout << “Done!” << endl;

10

Using while for Input Validation
 Inspect user input values to make sure they are

valid.
 If not valid, ask user to re-enter value.

 What is another way to write the relational
expression?

int number;

cout << “Enter a number between 1 and 10: “;
cin >> number;
while (number < 1 || number > 10) {
 cout << “Please enter a number between 1 and 10: “;
 cin >> number;
}

// Do something with number here

11

Using while for Input Validation
 Can check for valid characters

char answer;

cout << “Enter the answer to question 1 (a,b,c or d): “;
cin >> answer;
while (answer != ‘a’ && answer != ‘b’ &&
 answer != ‘c’ && answer != ‘d’)
{
 cout << “Please enter a letter a, b, c or d: “;
 cin >> answer;
}

// Do something with answer here

12

Counters
 A counter is a variable used to keep track of loop

iterations.

 Output:

cout << “Number Number Squared” << endl;
cout << “------ --------------” << endl;

int num = 1;
while (num <= 8)
{
 cout << num << “ “ << (num * num) << endl;
 num = num + 1; // increment the counter
}

Number Number Squared
------ --------------
1 1
2 4
3 9
4 16
5 25
6 36
7 49
8 64

