
1

Ch 5. Looping
Part 2

CS 1428
Fall 2011

Jill Seaman

Lecture 13

2

Increment and Decrement
 Loops commonly have a counter variable
 Inside the loop body, counter variable is often

− incremented: increased by one OR
− decremented: decreased by one

 Example from last time:
int number = 1;

while (number <= 3)
{
 cout << “Student” << number << endl;
 number = number + 1;
}

cout << “Done” << endl;

3

Increment/Decrement Operators

 C++ provides unary operators to increment and
decrement.

- Increment operator: ++
- Decrement operator: --

 Examples:

int num = 10;
num++; //equivalent to: num = num + 1;
num--; // equivalent to: num = num - 1;

4

Postfix and Prefix

 The increment and decrement operators may be
used in either postfix OR prefix mode:

- Postfix:
- Prefix:

 Examples:
int num = 10;
num++; //equivalent to: num = num + 1;
num--; //equivalent to: num = num - 1;
++num; //equivalent to: num = num + 1;
--num; //equivalent to: num = num - 1;

num++

++num

5

Postfix and Prefix: why?

 No difference between postfix and prefix
UNLESS the variable is used in an expression:

- Postfix, increments num AFTER it is used.
- Prefix, increments num BEFORE it is used.

• Examples:
int num = 10;
cout << num++;
//equivalent to: cout << num; num = num + 1;

cout << ++num;
//equivalent to: num = num + 1; cout << num;

num++

++num

6

Watch out

 What is output in each case?

 I recommend NOT using ++ and -- in
expressions.

int x = 13;

if (x++ > 13)
 cout << “x greater than 13” << endl;
cout << x << endl;

int x = 13;

if (++x > 13)
 cout << “x greater than 13” << endl;
cout << x << endl;

7

Two kinds of loops
 Conditional loop: executes as long as a certain

condition is true
- input validation: loops as long as input is invalid

 Count-controlled loop: executes a specific
number of times/iterations

- count may be a literal, or stored in a variable.
 Count-controlled loop follows a pattern:

- initialize counter to zero (or other start value).
- test counter to make sure it is less than count.
- update counter during each interation.

8

for

 the for statement is used to easily implement a
count-controlled loop.

 expr1 is evaluated (initialization).
 expr2 is evaluated (test)

− If it is true, then statement is executed,
then expr3 is executed (update), repeat.

− If/when it is false, then statement is skipped,
and the loop is exited.

for (expr1; expr2; expr3)
 statement

9

for and while

 the for statement:

 is equivalent to the following while statement:

for (expr1; expr2; expr3)
 statement

expr1; // initialize
while (expr2) { // test
 statement
 expr3; // update
}

10

for example

 Example:

 Output:

int number;
for (number = 1; number <= 3; number++)
{
 cout << “Student” << number << endl;
}

cout << “Done” << endl;

Student1
Student2
Student3
Done

11

Counters: Redo
 The example using while to output table of

squares of ints 1 through 8:.

 Rewritten using for:

cout << “Number Number Squared” << endl;
cout << “------ --------------” << endl;

int num = 1;
while (num <= 8)
{
 cout << num << “ “ << (num * num) << endl;
 num = num + 1; // increment the counter
}

cout << “Number Number Squared” << endl;
cout << “------ --------------” << endl;

int num;
for (num = 1; num <= 8; num++)
 cout << num << “ “ << (num * num) << endl;

12

Watch out

 What is output?

 Do not update the loop variable in the body of a
for loop.

int x;

for (x=1; x <= 10; x++) {
 cout << “Repeat!” << endl;
 x++;
}

cout << “Done!” << endl;

13

Options

 What is output?

 Can define the loop variable inside the for:

 Do NOT try to access x outside the loop (the
scope of x is the for loop only)

int x;

for (x = 10; x > 0; x = x-2)
 cout << x << endl;

Note: no semicolon

for (int x = 10; x > 0; x=x-2)
 cout << x << endl;

cout << x << endl; //ERROR, can’t use x here

14

Non-deterministic count

 How many rows are output?

 It depends . . .
 It’s still a count controlled loop, even though the

count is not known until run-time.

int maxCount;
cout << “How many squares do you want?” << endl;
cin >> maxCount;

cout << “Number Number Squared” << endl;
cout << “------ --------------” << endl;

int num;
for (num = 1; num <= maxCount; num++)
 cout << num << “ “ << (num * num) << endl;

15

The exprs are optional
 You may omit any of the three exprs in the for

loop header

 Watchout:
for (; ;)
 cout << “Hello!” << endl;

int value, incr;
cout << “Enter the starting value: “;
cin >> value;

for (; value <= 100;)
{
 cout << “Please enter the increment amount: “;
 cin >> incr;
 value = value + incr;
 cout << value << endl;
}
// technically it’s a count controlled loop, but use a while

