
1

Ch 5. Looping
Part 4

CS 1428
Fall 2011

Jill Seaman

Lecture 15

2

Reading data from a file

 Loops can be used to read a list of data from a
file.

• Example file:

84
32
99
77
52

3

Reading data from a file

 Problem: when to stop the loop?
 First entry in file could be count of number of

items
- problems: maintenance, large files

 Could use sentinal value
- problem: may not be one, maintenance

• Want to automatically detect end of file

4

Using >> to detect end of file

 stream extraction operation produces a value:

 inputFile >> number:
- tries to read a value into number
- if it was successful, value is true
- if it failed (nothing left to input), value is false

 (and the value in number does not change!)

int number;
ifstream inputFile;
inputFile.open(“numbers.txt”);

bool foundValue = (inputFile >> number);

5

Using the result of >>

 Example:

 ��������������������"����������������!���������

int number;
ifstream inputFile;
inputFile.open(“numbers.txt”);

bool foundValue = (inputFile >> number);

if (foundValue)
 cout << “The data read in was: “ << number << endl;
else
 cout << “Could not read data from file.” << endl;

if (inputFile >> number)
 ...

6

Sum all the values in the file



 Output:

int number;
ifstream inputFile;
inputFile.open(“numbers.txt”);

int total = 0;

while (inputFile >> number) {
 total = total + number;
}

cout << “The sum of the numbers in the file: “ << total
 << endl;

The sum of the numbers in the file: 344

7

Loops in C++: a summary
 Any loop can be made to work for a given problem
 while loop:

- test at start of loop
- generic

 for loop:
- initialize/test/update
- count-controlled loops

 do-while loop
- always do at least once
- good for repeating, simple menu processing

8

Nested Loops

 When one loop appears in the body of another
 For every iteration of the outer loop, we do all

the iterations of the inner loop
 Example from “real life”:
 A clock. For each hour in a day (24), we iterate

over 60 minutes.
12:00 1:00 2:00 3:00
12:01 1:01 2:01 .
12:02 1:02 2:02 .
...
12:59 1:59 2:59 .

9

Print a bar graph


��������
������������������	�����������
����
���������������"���������������������� �

 numbers.txt: Output:

int number;
ifstream inputFile;
inputFile.open(“numbers.txt”);

while (inputFile >> number) {
 for (int i = 1; i <= number; i++)
 cout << ‘*’;
 cout << endl;
}

8
3
6
10

10

Calculate grades for a class

 	��
����������������������������
cout << fixed << setprecision(1);

int numStudents, numTests;
cout << “How many students? “;
cin >> numStudents;
cout << “How many test scores? “;
cin >> numTests;

for (int student=1; student <= numStudents; student++) {
 float total = 0, score;
 cout << “Enter the “ << numTests
 << “ test scores for student ” << student << endl;
 for (int test=1; test <= numTests; test++) {
 cin >> score;
 total = total + score;
 }
 float avgScore = total/numTests;
 cout << “Average for student” << student
 << “ is: “ << avgScore << endl;
}

11

Calculate grades for a class

 �������
How many students? 3
How many test scores? 4
Enter the 4 test scores for student 1
88 90.5 92 77.5
Average for student1 is: 87.0
Enter the 4 test scores for student 2
66.5 70.5 80 86
Average for student2 is: 75.8
Enter the 4 test scores for student 3
99 93.5 80 79
Average for student3 is: 87.9

12

Breaking out of a loop

 Sometimes we want to abort a loop before it has
completed.

 The break statement can be used to terminate
the loop from within.

• Don’t do this. It makes your code hard to read
and debug.

cout << “guess a number between 1 and 10” << endl;
int number;
while (true) {
 cin >> number;
 if (number == 8)
 break;
}

13

Stopping an iteration

 Sometimes want to abort an iteration before it is
done.

 The continue statement can be used to
terminate the current iteration:

 Output:
 Don’t do this either. It makes your code hard to

read and debug.

for (int i=1; i <= 5; i++) {
 if (i == 4)
 continue;
 cout << i << “ “;
}

1 2 3 5

14

Do the DVD demo program

 program 5-18 on page 293.

 What does it do? What is the pricing scheme?

