
1

Ch 6. Functions
Part 3

CS 1428
Fall 2011

Jill Seaman

Lecture 22

2

Passing Arguments by Reference

 Pass by reference: when an argument is passed
to a function, the function has direct access to
the original argument.

 Pass by reference in C++ is implemented using
a reference parameter, which has an ampersand
(&) in front of it:

 A reference parameter acts as an alias to its
argument.

 Changes to the parameter in the function DO
affect the value of the argument

void changeMe (int &myValue);

3

Example: Pass by Reference

#include <iostream>
using namespace std;

void changeMe(int &);

int main() {
 int number = 12;
 cout << "number is " << number << endl;
 changeMe(number);
 cout << "Back in main, number is " << number << endl;
 return 0;
}

void changeMe(int &myValue) {
 myValue = 200;
 cout << "myValue is " << myValue << endl;
}

Output:
number is 12
myValue is 200
Back in main, number is 200

myValue is an alias for number

4

Using Pass by Reference for input

double square(double) {
 return number * number;
}

void getRadius(double &rad) {
 cout << "Enter the radius of the circle: ";
 cin >> rad;
}

int main() {
 const double PI = 3.14159;
 double radius;
 double area;
 cout << fixed << setprecision(2);
 getRadius(radius);
 area = PI * square(radius);
 cout << "The area is " << area << endl;
 return 0;
}

During the function execution,
rad is an alias to radius in the
main program.

5

Pass by Reference

 Changes to a reference parameter are actually
made to its argument

 The & must be in the function header AND the
function prototype.

 The argument passed to a reference parameter
must be a variable – it cannot be an expression
or constant

 Use when appropriate – don’t use when
- argument should not be changed by function
- function needs to return only 1 value

6

More About
Variable Definitions and Scope

 The scope of a variable is the part of the program
where the variable may be used.

 For a variable defined inside of a function, its
scope is the function, from the point of definition
to the end of the function.

 For a variable defined inside of a block, its scope
is the innermost block in which it is defined, from
the point of definition to the end of that block.

7

Variables in functions and blocks

int main()
{
 double income; //scope of income is red + blue
 cout << "What is your annual income? ";
 cin >> income;

 if (income >= 35000) {
 int years; //scope of years is blue;
 cout << "How many years at current job? ";
 cin >> years;
 if (years > 5)
 cout << "You qualify.\n";
 else
 cout << "You do not qualify.\n";
 }
 else
 cout << "You do not qualify.\n";
 cout << “Thanks for applying.\n”;
 return 0;
}

Cannot access years
down here

8

Variables with the same name

 In an inner block, a variable can have the same
name as a variable in the outer block.

 When in the inner block, the outer definition is
not available (it is hidden).

 Not good style: difficult to trace code and find
bugs

9

Variables with the same name

int main()
{
 int number;
 cout << "Enter a number greater than 0: ";
 cin >> number;
 if (number > 0) {
 int number; // another variable named number
 cout << "Now enter another number ";
 cin >> number;
 cout << "The second number you entered was ";
 cout << number << endl;
 }
 cout << "Your first number was " << number << endl;

 return 0;
} Output:

Enter a number greater than 0: 88
Now enter another number 2
The second number you entered was 2
Your first number was 88

10

Local and Global Variables

 Variables defined inside a function are local to
that function.
- They are hidden from the statements in other

functions, which cannot access them.

 Because the variables defined in a function are
hidden, other functions may have separate,
distinct variables with the same name.
- This is not bad style. These are easy to keep

straight.

11

Local variables are hidden from other
functions

#include <iostream>
using namespace std;

void anotherFunction();

int main() {
 int num = 1;
 cout << "In main, num is " << num << endl;
 anotherFunction();
 cout << "Back in main, num is " << num << endl;
 return 0;
}

void anotherFunction() {
 int num = 20;
 cout << "In anotherFunction, num is " << num << endl;
}

Output:
In main, num is 1
In anotherFunction, num is 20
Back in main, num is 1

12

Local variables are hidden from other
functions

 When the program is executing main, the num
variable defined in main is visible.

 When anotherFunction is called, only variables
defined inside it are visible, so the num variable
in main is hidden.

13

Local Variable Lifetime

 Parameters have the same scope as local
variables in the function.

 When the function begins, its parameters and
local variables (as their definitions are
encountered) are created in memory, and when
the function ends, the parameters and local
variables are destroyed.

 This means that any value stored in a local
variable is lost between calls to the function in
which the variable is declared.

14

Global Variables

 A global variable is any variable defined outside
all the functions in a program.

 The scope of a global variable is the portion of
the program from the variable definition to the
end.

 This means that a global variable can be
accessed by all functions that are defined after
the global variable is defined

15

Global Variables: example

#include <iostream>
using namespace std;

void anotherFunction();
int num = 2;

int main() {
 cout << "In main, num is " << num << endl;
 anotherFunction();
 cout << "Back in main, num is " << num << endl;
 return 0;
}

void anotherFunction() {
 cout << "In anotherFunction, num is " << num << endl;
 num = 50;
 cout << "But now it is changed to " << num << endl;
}

Output:
In main, num is 2
In anotherFunction, num is 2
But now it is changed to 50
Back in main, num is 50

16

Global Variables

 You should avoid using global variables because:
 They make programs difficult to debug.

- If the wrong value is stored in a global var, you have
to find every place in the whole program where the
value is changed

 Functions that access globals are not self-
contained
- cannot easily reuse the function in another program.
- cannot understand the function without

understanding how the global is used everywhere

17

Global Constants: example
 It is ok to use global constants because their

values do not change.
double getArea(double);
double getPerimeter(double);

const double PI = 3.14159;

int main() {
 double radius;
 cout << fixed << setprecision(2);
 cout << "Enter the radius of the circle: ";
 cin >> radius;

 cout << "The area is " << getArea(radius) << endl;
 cout << "The perimeter is " << getPerimeter(radius) << endl;
 return 0;
}

18

Global Constants: example

 double getArea(double number) {
 return PI * number * number;
}

double getPerimeter(double number) {
 return PI * 2 * number;
}

Output:
Enter the radius of the circle: 2.2
The area is 15.21
The perimeter is 13.82

19

Scope Rules Summary
 Variable scope: to end of the block it's defined in.
 Variables cannot have same name in same exact scope.

- Variable defined in inner block can hide a variable with the
same name from outer block.

 Variables defined in one function cannot be seen from another.
 Parameter scope: the body of the function

- cannot have function variable same name as parameter
 Variable lifetime: variables are destroyed at the end of their

scope
 Global variable/constant scope: to end of entire program

- variables defined inside a function are called Local

