
1

Ch 6. Functions
Part 3

CS 1428
Fall 2011

Jill Seaman

Lecture 22

2

Passing Arguments by Reference

 Pass by reference: when an argument is passed
to a function, the function has direct access to
the original argument.

 Pass by reference in C++ is implemented using
a reference parameter, which has an ampersand
(&) in front of it:

 A reference parameter acts as an alias to its
argument.

 Changes to the parameter in the function DO
affect the value of the argument

void changeMe (int &myValue);

3

Example: Pass by Reference


#include <iostream>
using namespace std;

void changeMe(int &);

int main() {
 int number = 12;
 cout << "number is " << number << endl;
 changeMe(number);
 cout << "Back in main, number is " << number << endl;
 return 0;
}

void changeMe(int &myValue) {
 myValue = 200;
 cout << "myValue is " << myValue << endl;
}

Output:
number is 12
myValue is 200
Back in main, number is 200

myValue is an alias for number

4

Using Pass by Reference for input


double square(double) {
 return number * number;
}

void getRadius(double &rad) {
 cout << "Enter the radius of the circle: ";
 cin >> rad;
}

int main() {
 const double PI = 3.14159;
 double radius;
 double area;
 cout << fixed << setprecision(2);
 getRadius(radius);
 area = PI * square(radius);
 cout << "The area is " << area << endl;
 return 0;
}

During the function execution,
rad is an alias to radius in the
main program.

5

Pass by Reference

 Changes to a reference parameter are actually
made to its argument

 The & must be in the function header AND the
function prototype.

 The argument passed to a reference parameter
must be a variable – it cannot be an expression
or constant

 Use when appropriate – don’t use when
- argument should not be changed by function
- function needs to return only 1 value

6

More About
Variable Definitions and Scope

 The scope of a variable is the part of the program
where the variable may be used.

 For a variable defined inside of a function, its
scope is the function, from the point of definition
to the end of the function.

 For a variable defined inside of a block, its scope
is the innermost block in which it is defined, from
the point of definition to the end of that block.

7

Variables in functions and blocks



int main()
{
 double income; //scope of income is red + blue
 cout << "What is your annual income? ";
 cin >> income;

 if (income >= 35000) {
 int years; //scope of years is blue;
 cout << "How many years at current job? ";
 cin >> years;
 if (years > 5)
 cout << "You qualify.\n";
 else
 cout << "You do not qualify.\n";
 }
 else
 cout << "You do not qualify.\n";
 cout << “Thanks for applying.\n”;
 return 0;
}

Cannot access years
down here

8

Variables with the same name

 In an inner block, a variable can have the same
name as a variable in the outer block.

 When in the inner block, the outer definition is
not available (it is hidden).

 Not good style: difficult to trace code and find
bugs

9

Variables with the same name


int main()
{
 int number;
 cout << "Enter a number greater than 0: ";
 cin >> number;
 if (number > 0) {
 int number; // another variable named number
 cout << "Now enter another number ";
 cin >> number;
 cout << "The second number you entered was ";
 cout << number << endl;
 }
 cout << "Your first number was " << number << endl;

 return 0;
} Output:

Enter a number greater than 0: 88
Now enter another number 2
The second number you entered was 2
Your first number was 88

10

Local and Global Variables

 Variables defined inside a function are local to
that function.
- They are hidden from the statements in other

functions, which cannot access them.

 Because the variables defined in a function are
hidden, other functions may have separate,
distinct variables with the same name.
- This is not bad style. These are easy to keep

straight.

11

Local variables are hidden from other
functions


#include <iostream>
using namespace std;

void anotherFunction();

int main() {
 int num = 1;
 cout << "In main, num is " << num << endl;
 anotherFunction();
 cout << "Back in main, num is " << num << endl;
 return 0;
}

void anotherFunction() {
 int num = 20;
 cout << "In anotherFunction, num is " << num << endl;
}

Output:
In main, num is 1
In anotherFunction, num is 20
Back in main, num is 1

12

Local variables are hidden from other
functions

 When the program is executing main, the num
variable defined in main is visible.

 When anotherFunction is called, only variables
defined inside it are visible, so the num variable
in main is hidden.

13

Local Variable Lifetime

 Parameters have the same scope as local
variables in the function.

 When the function begins, its parameters and
local variables (as their definitions are
encountered) are created in memory, and when
the function ends, the parameters and local
variables are destroyed.

 This means that any value stored in a local
variable is lost between calls to the function in
which the variable is declared.

14

Global Variables

 A global variable is any variable defined outside
all the functions in a program.

 The scope of a global variable is the portion of
the program from the variable definition to the
end.

 This means that a global variable can be
accessed by all functions that are defined after
the global variable is defined

15

Global Variables: example


#include <iostream>
using namespace std;

void anotherFunction();
int num = 2;

int main() {
 cout << "In main, num is " << num << endl;
 anotherFunction();
 cout << "Back in main, num is " << num << endl;
 return 0;
}

void anotherFunction() {
 cout << "In anotherFunction, num is " << num << endl;
 num = 50;
 cout << "But now it is changed to " << num << endl;
}

Output:
In main, num is 2
In anotherFunction, num is 2
But now it is changed to 50
Back in main, num is 50

16

Global Variables

 You should avoid using global variables because:
 They make programs difficult to debug.

- If the wrong value is stored in a global var, you have
to find every place in the whole program where the
value is changed

 Functions that access globals are not self-
contained
- cannot easily reuse the function in another program.
- cannot understand the function without

understanding how the global is used everywhere

17

Global Constants: example
 It is ok to use global constants because their

values do not change.
double getArea(double);
double getPerimeter(double);

const double PI = 3.14159;

int main() {
 double radius;
 cout << fixed << setprecision(2);
 cout << "Enter the radius of the circle: ";
 cin >> radius;

 cout << "The area is " << getArea(radius) << endl;
 cout << "The perimeter is " << getPerimeter(radius) << endl;
 return 0;
}

18

Global Constants: example

 double getArea(double number) {
 return PI * number * number;
}

double getPerimeter(double number) {
 return PI * 2 * number;
}

Output:
Enter the radius of the circle: 2.2
The area is 15.21
The perimeter is 13.82

19

Scope Rules Summary
 Variable scope: to end of the block it's defined in.
 Variables cannot have same name in same exact scope.

- Variable defined in inner block can hide a variable with the
same name from outer block.

 Variables defined in one function cannot be seen from another.
 Parameter scope: the body of the function

- cannot have function variable same name as parameter
 Variable lifetime: variables are destroyed at the end of their

scope
 Global variable/constant scope: to end of entire program

- variables defined inside a function are called Local

