‘ Ch 6. Functions

\

Part 3

CS 1428
Fall 2011

Jill Seaman

Lecture 22

| pase forence

assing Arguments by Reference

Pass by reference: when an argument is passed
to a function, the function has direct access to
the original argument.

Pass by reference in C++ is implemented using
a reference parameter, which has an ampersand
(&) in front of it:

void changeMe (int &myValue);

A reference parameter acts as an alias to its
argument.

Changes to the parameter in the function DO
affect the value of the argument

Example: Pass by Reference

#include <iostream> Output:

using namespace std; number is 12
myValue is 200

Back in main, number is 200

void changeMe(int &);

int main() {
int number = 12;
cout << "number is " << number << endl;
changeMe (number) ;
cout << "Back imn in, number is " << number << endl;
return 0;
} myValue is an alias for number

void changeMe(int &myValue) {
myValue = 200;
cout << "myValue is " << myValue << endl;

Using Pass by Reference for input

double square(double) {
return number * number;

}

void getRadius(double &rad) {
cout << "Enter the radi of the circle: ";
cin >> rad;

}

During the function execution,
rad is an alias to radius in the
main program.

int main() {

const double PI = 3.14159;
double radius;
double area;
cout << fixed <<
getRadius (radius);

area = PI * square(radius);

cout << "The area is " << area << endl;
return 0;

tprecision(2);

—

\

Pass by Reference

Changes to a reference parameter are actually
made to its argument

The & must be in the function header AND the
function prototype.

The argument passed to a reference parameter
must be a variable — it cannot be an expression
or constant

Use when appropriate — don’t use when

argument should not be changed by function
function needs to return only 1 value :

————

(More About

Variable Definitions and Scope

The scope of a variable is the part of the program
where the variable may be used.

For a variable defined inside of a function, its
scope is the function, from the point of definition
to the end of the function.

For a variable defined inside of a block, its scope
is the innermost block in which it is defined, from
the point of definition to the end of that block.

Variables in functions and blocks

int main()
double income; //scope of income is red + blue
cout << "What is your annual income? ";
cin >> income;

if (income >= 35000) {
int years; //scope of years is blue;
cout << "How many years at current job? ";
cin >> years;
if (years > 5)
cout << "You qualify.\n";
else
cout << "You do not qualify.\n";
}
else
cout << "You do not qualify.\n"; Cannot access years
cout << “Thanks for applying.\n”; down here ;

return 0;

Variables with the same name

* In an inner block, a variable can have the same
name as a variable in the outer block.

* When in the inner block, the outer definition is
not available (it is hidden).

* Not good style: difficult to trace code and find
bugs

‘ Variables with the same name

\

int main()

{

int number;
cout << "Enter a number greater than 0: ";

cin >> number;

if (number > 0) {
int number; // another variable named number

cout << "Now enter another number ";

cin >> number;
cout << "The second number you entered was ";

cout << number << endl;

}

cout << "Your first number was " << number << endl;

return 0;
Output:

Enter a number greater than 0: 88
Now enter another number 2

The second number you entered was 2
Your first number was 88

‘ Local and Global Variables

Variables defined inside a function are local to
that function.

They are hidden from the statements in other
functions, which cannot access them.

Because the variables defined in a function are
hidden, other functions may have separate,
distinct variables with the same name.

This is not bad style. These are easy to keep
straight. "

| Local variables are hidden from other
functions

#include <iostream> Output:

using namespace std; In main, numis 1 _
In anotherFunction, num is 20
Back in main, num is 1

void anotherFunction();

int main() {
int num = 1;
cout << "In main, num is " << num << endl;
anotherFunction();
cout << "Back in main, num is " << num << endl;
return 0;

}

void anotherFunction() {
int num = 20;
cout << "In anotherFunction, num is " << num << endl;

11

N —

| Local variables are hidden from other
functions

When the program is executing main, the num
variable defined in main is visible.

When anotherFunction is called, only variables
defined inside it are visible, so the num variable
in main is hidden.

Function main

int num = 1; <@—————— This num variable is visible
only in main.

Function anotherFunction

int num = 20; <——

This num variable is visible
only in anotherFunction.

12

—

Parameters have the same scope as local
variables in the function.

When the function begins, its parameters and
local variables (as their definitions are
encountered) are created in memory, and when
the function ends, the parameters and local
variables are destroyed.

Local Variable Lifetime

This means that any value stored in a local
variable is lost between calls to the function in
which the variable is declared.

13

\ —
(__

A global variable is any variable defined outside
all the functions in a program.

Global Variables

The scope of a global variable is the portion of
the program from the variable definition to the
end.

This means that a global variable can be
accessed by all functions that are defined after
the global variable is defined

14

\ —

—

\

Global Variables: example

#include <iostream> Output:

using namespace std; In main, num is 2

In anotherFunction, num is 2
But now it is changed to 50

void anotherFunction(); Back in main, num is 50

int num = 2;

int main() {
cout << "In main, num is " << num << endl;
anotherFunction();
cout << "Back in main, num is " << num << endl;
return 0;

}

void anotherFunction() {
cout << "In anotherFunction, num is " << num << endl;
num = 50;
cout << "But now it is changed to " << num << endl@

}

—

Global Variables

You should avoid using global variables because:
They make programs difficult to debug.

If the wrong value is stored in a global var, you have
to find every place in the whole program where the
value is changed

Functions that access globals are not self-
contained

cannot easily reuse the function in another program.

cannot understand the function without
understanding how the global is used everywhere

[& < exomole

lobal Constants: example

* It is ok to use global constants because their
values do not change.

double getArea(double);
double getPerimeter(double);

const double PI = 3.14159;

int main() {
double radius;
cout << fixed << setprecision(2);
cout << "Enter the radius of the circle: ";
cin >> radius;

cout << "The area is " << getArea(radius) << endl;
cout << "The perimeter is " << getPerimeter(radius) << endl;
return 0; 17

[& < exomole

lobal Constants: example

double getArea(double number) {
return PI * number * number;

}

double getPerimeter(double number) {
return PI * 2 * number;

}

Output:

Enter the radius of the circle: 2.2
The area is 15.21

The perimeter is 13.82

18

—

Variable scope: to end of the block it's defined in.

Scope Rules Summary

Variables cannot have same name in same exact scope.

Variable defined in inner block can hide a variable with the
same name from outer block.

Variables defined in one function cannot be seen from another.
Parameter scope: the body of the function
cannot have function variable same name as parameter

Variable lifetime: variables are destroyed at the end of their
scope

Global variable/constant scope: to end of entire program

variables defined inside a function are called Local

