
1

Ch 11. Structured Data
(11.2 to 11.8)

CS 1428
Fall 2011

Jill Seaman

Lecture 24

Data Types

 Data Type:
− set of values
− set of operations over those values

 example: Integer
− whole numbers, -32768 to 32767
− +, -, *, /, %, ==, !=, <, >, <=, >=, ...

 Which operation is not valid for float?

3

Data Types (C/C++)

 Scalar (or Basic) Data Types (atomic values)
− Arithmetic types

 Integers
− short, int, long
− char, bool

 Floating points
− float, double, long double

 Composite (or Aggregate) Types:
− Arrays: ordered sequence of values of the same type
− Structures: named components of various types

4

Structures

 Used to represent a relationship between values
of different types

 Example: student
− ID Number
− Name
− Age
− Major
− Address

 (the values are related because they belong to
the same student)

5

Structures

 Define the student as a struct in C++:

 NOTE: semicolon after last brace!
 A struct is a data type, by convention the name

is capitalized.
 The components are called “members” (or

“fields”).

struct Student {
 int idNumber;
 string name;
 int age;
 string major;
};

6

Structures

 So far we have defined a new data type, but we
haven’t defined any variables of that type.

 To define a variable of type Student:

 Can define multiple variables of type Student:

 Each one has its own set of the member
variables in the Student data type

Student student1, student2, gradStudent;

Student csStudent;

7

Structures

 Each variable of type student has its own set of
the member variables from the Student data
type

Student student1, student2;

idNumber

name

age

major

student1
idNumber

name

age

major

student2

8

Accessing Structure Members
 Use dot notation to access members of a struct

variable:

 Member variables of structures can be used just
like regular variables of the same type.

student1.age = 18;
student2.idNumber = 123456;
cin >> gradStudent.name;
gradStudent.major = ”Rocket Science”;

student1.age++; //happy birthday
myFunc(student2.idNumber);
if (student1.age==student2.age) {
 ...
}

9

Structures: operations

 Valid operations over entire structs:
− assignment: student1 = student2;
− function call: myFunc(gradStudent,x);

 Invalid operations over structs:
− comparison: student1 == student2
− output: cout << student1;
− input: cin >> student2;
− Must do these member by member

10

Structures: output
 Output the members one at a time:

 Comparing two structs:

cout << student1.idNumber << " ";
cout << student1.name << " ";
cout << student1.age << " ";
cout << student1.major << endl;

Output:
11122 Chris Johnson 19 Football

if (student1.idNumber == student2.idNumber &&
 student1.name == student2.name &&
 student1.age == student2.age &&
 student1.major == student2.major)
...

11

Initializing structures

 Struct variable can be initialized when it is
defined:

 Must give values in order of the struct
declaration.

 Can NOT initialize members in structure
declaration, only variable definition:

Student student1 = {123456,”John Smith”,22, ”Math”};

struct StudentA {
 int id = 123456; //ILLEGAL
 string name = “John Smith”; //ILLEGAL
}

12

Arrays of Structures

 You can store values of structure types in arrays.

 Each student is accessible via the subscript
notation.

 Members of structure accessible via dot notation

Student roster[40]; //holds 40 Student structs

roster[0] = student1;

cout << roster[0].name << endl;

13

Arrays of Structures

 Arrays processed in loops:
Student roster[40];

//input
for (int i=0; i<40; i++) {
 cout << "Enter the name, age, idNumber and "
 << "major of the next student: \n";
 cin >> roster[i].name >> roster[i].age
 >> roster[i].idNumber >> roster[i].major;
}

//output all the id numbers and names
for (int i=0; i<40; i++) {
 cout << roster[i].idNumber << endl;
 cout << roster[i].name << endl;
}

14

Nested Structures

 You can nest one structure inside another.

struct Address {
 string street;
 string city;
 string state;
 int zip;
};

struct Student {
 int idNumber;
 string name;
 Address homeAddress;
};

15

Nested Structures

 Use dot operator multiple times to get into the
nested structure:

 Or set up address structure separately:

Student student1;
student1.name = “Bob Lambert”;
student1.homeAddress.city = “San Angelo”;
student1.homeAddress.state = “TX”;

Address a1;
a1.street = “101 Main St.”;
a1.city = “San Angelo”;
a1.state = “TX”;
a1.zip = 76903;

student1.name = “Bob Lambert”;
student1.homeAddress = a1;

16

Structures as function arguments

 Structure variables may be passed as
arguments to functions.
void showStudent(Student x) {
 cout << x.idNumber << endl;
 cout << x.name << endl;
 cout << x.age << endl;
 cout << x.major << endl;
}

// in main:
Student student1;

//input information about student1 here

showStudent(student1);

17

Structures as function arguments

 By default, structure variables are passed by
value (like most variables).

 If the function needs to change the value of a
member, the structure variable should be passed
by reference.

void happyBirthday(Student &s) {
 s.age++;
}

18

Returning Structure from Function
 A function may return a structure.

Student inputStudent(ifstream &fin) {
 Student result;
 fin >> result.idNumber;
 fin >> result.name;
 fin >> result.age;
 fin >> result.major;
 return result;
}
// in main:
ifstream inFile;
inFile.open(“students.dat”);

Student student1 = inputStudent(inFile);
for (int i=0; i<40; i++)
 roster[i] = inputStudent(inFile);

inFile.close();

Always pass input/output
streams by reference!!

19

Example: nested Structures

 Could have multiple structs using Address:
struct Student {
 int idNumber;
 string name;
 float gpa;
 Address homeAddress;
 Address campusAddr;
};

struct Faculty {
 int idNumber;
 string name;
 string officeLocation;
 Address address;
};

struct GradStudent {
 int idNumber;
 string name;
 int yearGraduated;
 Address homeAddress;
 Address campusAddr;
};

20

Example: nested Structures

 Could have one function to process Addresses

 Call it for different structure types with Address:

void showAddress(Address x) {
 cout << x.street << endl;
 cout << x.city << “, “;
 cout << x.state << “ “;
 cout << x.zip << endl;
}

Student st;
Faculty fac;
GradStudent gs;
//...
showAddress(st.homeAddress);
showAddress(fac.address);
showAddress(gs.campusAddr);

21

 Nested Arrays and Structures


struct Course {
 string course;
 int section;
 string title;
 string days;
 string time;
 string bldg;
 int roomNum;
 string instructor;
};

Student enrolledStudents[35000];

enrolledStudents[8].schedule[0].course = “CS1428”;

struct Student {
 int idNumber;
 string name;
 string major;
 Address address;
 Course schedule[10];
 int numCourses;
};

22

Initializing arrays of structures

 Provide an initialization list for one or more of the
elements in the array:

Student roster[40] = {
 {123456,”John Smith”,22, ”Math”}
 {444555,”Lisa Simpson”,18, “Biology”},
 {999999,”Tony Jackson”,25, “Physics”},
 {887766,”Melissa Brown”,20, “Engineering”}
};

