
1

Ch 3:Expressions and Interactivity
Part I

CS 1428
Fall 2011

Jill Seaman

Lecture 5

2

Console Input: cin
! Used to get input from the user.
! cin: console input (from the keyboard)

" a stream object: works on a sequence of data
! >>: the stream extraction operator

" Extracts value from stream (lhs) and stores in variable
on right-hand side (rhs)

" cin >> myVariable;
" skips over white-space (space,newline) to get the next

value.
" Automatically converts characters typed by the user to

the type of the variable on the rhs.
" This statement waits for the user to type a value.

3

Console Input: cin
! Output a prompt (using cout) to tell the user

what type of data to enter BEFORE using cin.

! Waits for user to enter a number followed by
enter/newline.

! Make sure arrows point in the right direction
" output: to stream
" input: to variable

int diameter;

cout << “What is the diameter of the circle? ”;
cin >> diameter;

4

Console Input: Multiple Values

! You can input multiple values in one line:

! The user may enter them either
" on one line, separated by space
" on separate lines

! The user must enter values of the expected
data type.

int x, y;

cout << “Enter two integers: “ << endl;
cin >> x >> y;

5

(Mathematical) Expressions

! An expression is a program component that
evaluates to a value.

! Examples:

! Each expression has a type, which is the type
of the result value.

x + 5 x * y / z
num 'A'
4 -15e10
8 * x * x – 16 * x + 3

6

Where can expressions occur?

! The rhs of an assignment statement:

! The rhs of a stream insertion operator (<<):

x = y * 10 / 3;
y = 8;
num = num + 1;
aLetter = 'W';
x = y;

cout << “The pay for the week is “ << hours * rate << endl;

cout << num;

cout << 25 / y;

7

Operator Precedence
! Which operation gets done first?

! Precedence Rules: Higher up done first
! Associativity: operators on same level are performed

either left to right or right to left:
" - (unary minus) Right to left

" * / % Left to right

" + - Left to right

!

answer = 1 + x + z;
result = x + 5 * y;

5 + 2 * 4
160 / 4 * 2
4 + 17 % 2 - 1

8

Parentheses

! You can use parentheses to override the
precedence or associativity rules.

! Run the expressions.cpp demo with input
values: 30 20 5

a + b / 4
(a + b) / 4
(4 * 17) + (3 – 1)
a – (b - c)

9

Exponents
! There is no operator for exponentiation in C++
! There IS a library function called “pow”

! The expression is a call to the pow function
with arguments x and 3.0.

! Arguments should have type double and the
result is a double.

! If x is 2.0, the result is 8.0.
! #include <cmath> is required to use pow.

result = pow(x, 3.0); // x cubed, or x to the third power

10

Type Conversion
! Implicit type conversion (type coercion) occurs

when an expression has an unexpected type.
! The compiler converts the expression to the

desired type automatically.
! Expressions of lower-ranking type are

converted to higher-ranking type.
" double
" float
" long
" int
" char

11

Type Conversion Rules

! Binary operations convert lower ranking value
to the type of the other expression/value.

! The rhs of assignment operator is converted to
the type of the variable on the lhs.

int years;
float interestRate;
result = years * interestRate;

// years is converted to float before being multiplied

int x, y = 4;
float z = 2.7;
x = y * z;

// y is converted to float, 10.8 is converted to int (10)

12

Integer Division

! When an integer is divided by an integer the
result is an integer.

! The remainder/fractional part is discarded, NO
ROUNDING.

double result;
result = 15 / 6; // 2.5 ==> 2 ==> 2.0
result = 15.0 / 6; // 6 ==> 6.0, result is 2.5

13

Type Casting

! Type casting is an explicit or manual type
conversion.

! static_cast<datatype>(expr)
! mainly used to force floating-point division

! why not:
?

int hits, atBats;
float battingAvg;
...
cin >> hits >> atBats;
battingAvg = static_cast<float>(hits) / atBats;

static_cast<float>(hits / atBats)

14

Overflow/Underflow

! When the value assigned to a variable is too
large or small for its type.

! integers tend to wrap around, without warning:

! floating point value overflow/underflow:
" may or may not get a warning
" result may be 0 or random value

short testVar = 32767;
cout << testVar << endl; // 32767, max value
testVar = testVar + 1;
cout << testVar << endl; //-32768, min value

