
1

Ch 3:Expressions and Interactivity
Part 2

CS 1428
Fall 2011

Jill Seaman

Lecture 6

2

Formatting Output

! Formatting: the way a value is printed:
" spacing
" decimal points, fractional values
" scientific notation

! cout has a standard way of formatting values
of each data type

! cout has “stream manipulators” to override the
default formatting.

! [use #include <iomanip> for these]

3

Unformatted Output
cout << 2897 << “ “ << 5 << “ “ << 837 << endl;
cout << 34 << “ “ << 7 << “ “ << 1623 << endl;

2897 5 837
34 7 1623

! To line up the output, we can specify the
(minimum) width for each number

4

Formatting Output: setw

! setw is a “stream manipulator”, like endl
! specifies the minimum width for the next item

to be output

! The value is right justified and padded with
spaces.

cout << “(“ << setw(6) << 209 << “)”;

(209)

5

Formatting Output: setw

! If the value is too big to fit it's printed in full:

cout << setw(6) << 2897 << setw(6) << 5
 << setw(6) << 837 << endl;
cout << setw(6) << 34 << setw(6) << 7
 << setw(6) << 1623 << endl;

 2897 5 837
 34 7 1623

cout << “(“ << setw(2) << 23456 << “)”;

(23456)

6

Formatting Output: setprecision

! setprecision specifies the number of significant
digits to be output for floating point values.

! it remains in effect until it is changed
! the default seems to be 6

cout << 123.45678 << endl;
cout << setprecision(4) << 1.3 << endl;
cout << 123.45678 << endl;
cout << setprecision(2) << 34.21;

123.457
1.3
123.5
34

7

Formatting Output: fixed

! fixed forces floating point values to be output
in decimal format, and not scientific notation.

! when used with setprecision, the value of
setprecision is used to determine the number
of digits after the decimal

cout << 12345678901.23 << endl;
cout << fixed << 12345678901.23 << endl;
cout << setprecision(2) << 123.45678 << endl;

1.23457e+10
12345678901.230000
123.46

8

Input: strings

! A string is a sequence of characters
! A string is stored sequentially in memory,

withthe null character ('\0') at the end
! A string can be stored in a variable whose type

is a “character array”
! An array is a sequence of variables with a

single name
! The elements in the array can be accessed by

number (first element, second element, etc.)

9

Input: strings

! an example definition of an array variable:

! the array holds 15 characters, but the last one
is '\0', so really only 14.

! Input/Output with character arrays (don't type
spaces in the input string):

char lastName[15];

cout << “Enter your last name: “;
cin >> lastName;
cout << “Your last name is: “ << lastName;

Enter your last name: Maxwell
Your last name is Maxwell

10

Formatted Input: setw

! specifies the maximum width for the next item
to be input

! used to prevent putting too many characters
into an array.

char word[5];
cout << “Enter a word: “;
cin >> setw(5) >> word;
cout << “You entered “ << word << endl;

Enter a word: tapioca
You entered tapi

11

Reading a Line of input

! cin.getline(<array>,<size>)
! getline reads <size> - 1 characters from the

screen into the char array <array>
(and adds '\0' at the end)

! getline reads spaces, doesn't need setw
char sentence[60];
cout << “Enter a sentence: “;
cin.getline(sentence, 60);
cout << “You entered “ << sentence << endl;

Enter a sentence: Life is a box of chocolates.
You entered Life is a box of chocolates.

12

Reading a Character

! << skips whitespace, so this code cannot read
a space or newline from the screen:

! cin.get(v) will read the next character typed
into v

char letter;
cout << “Enter a character“;
cin >> letter;
cout << “[“ << letter << “]”;

char letter;
cout << “Enter a character“;
cin.get(letter);
cout << “[“ << letter “]”;

Enter a character j
[j]

Enter a character j
[]

