Ch 3:Expressions and Interactivity
Part 2

CS 1428
Fall 2011

Jill Seaman

Lecture 6

Formatting Output

Formatting: the way a value is printed:
spacing
decimal points, fractional values
scientific notation

cout has a standard way of formatting values
of each data type

cout has “stream manipulators” to override the
default formatting.

[use #include <iomanip> for these]

Unformatted Output

cout << 2897 << " # << 5 << #” # << 837 << endl;
cout << 34 << “ " << 7 << " " << 1623 << endl;
2897 5 837
34 7 1623

To line up the output, we can specify the
(minimum) width for each number

Formatting Output: setw

setw is a “stream manipulator”, like endl

specifies the minimum width for the next item
to be output

cout << “(" << setw(6) << 209 << “)";

(209)

The value is right justified and padded with
spaces.

Formatting Output: setw

cout <<
<<
cout <<
<<

2897
34

setw(6) << 2897 << setw(6) << 5
setw(6) << 837 << endl;

setw(6) << 34 << setw(6) << 7
setw(6) << 1623 << endl;

5 837
7 1623

If the value is too big to fit it's printed in full:

cout << ”(” << Setw(2) << 23456 << ll)n;

(23456)

Formatting Output: setprecision

setprecision specifies the number of significant
digits to be output for floating point values.

it remains in effect until it is changed

the default seems to be 6

cout <<
cout <<
cout <<
cout <<

123.457
1.3
123.5
34

123.45678 << endl;
setprecision(4) << 1.3 << endl;
123.45678 << endl;
setprecision(2) << 34.21;

Formatting Output: fixed

fixed forces floating point values to be output
in decimal format, and not scientific notation.

when used with setprecision, the value of
setprecision is used to determine the number
of digits after the decimal

cout << 12345678901.23 << endl;

cout << fixed << 12345678901.23 << endl;

cout << setprecision(2) << 123.45678 << endl;

1.23457e+10

12345678901.230000
123.46

Input: strings

A string is a sequence of characters

A string is stored sequentially in memory,
withthe null character (\0') at the end

A string can be stored in a variable whose type
is a “character array”

An array is a sequence of variables with a
single name

The elements in the array can be accessed by
number (first element, second element, etc.)

Input: strings

an example definition of an array variable:

char lastName[1l5];

the array holds 15 characters, but the last one
is \O'", so really only 14.

Input/Output with character arrays (don't type
spaces in the input string):

cout << “Enter your last name: “;
cin >> lastName;
cout << “Your last name is: “ << lastName;

Enter your last name: Maxwell
Your last name is Maxwell 9

Formatted Input: setw

specifies the maximum width for the next item
to be input

used to prevent putting too many characters
into an array.

char word[5];

cout << “Enter a word: “;

cin >> setw(5) >> word;

cout << “You entered “ << word << endl;

Enter a word: tapioca
You entered tapi

10

Reading a Line of input

cin.getline(<array>,<size>)

getline reads <size> - 1 characters from the
screen into the char array <array>
(and adds "\0' at the end)

getline reads spaces, doesn't need setw

char sentence[60];

cout << “Enter a sentence: “;
cin.getline(sentence, 60);

cout << “You entered “ << sentence << endl;

Enter a sentence: Life is a box of chocolates.
You entered Life is a box of chocolates.

Reading a Character

<< skips whitespace, so this code cannot read
a space or newline from the screen:

char letter;

Enter a character J
cout << “Enter a character”; [31]
cin >> letter;
cout << “[“ << letter << “]";

14

cin.get(v) will read the next character typed
into v

char letter; Enter a character j
cout << “Enter a character”; [1

cin.get(letter);

cout << “[* << letter “]1”

.
4

11

12

