
1

Ch 3:Expressions and Interactivity
Part 3

CS 1428
Fall 2011

Jill Seaman

Lecture 7

2

File Input/Output

! Variables are stored in Main Memory/RAM
" values are lost when program is finished

executing
! To preserve the values computed by the

program: save them to a file
! Files are stored in Secondary Storage
! To have your program manipulate values

stored in a file, they must be input into
variables first.

3

File Stream Objects

! File stream data types:
" ifstream
" ofstream

! use #include <fstream> for these
! objects of type ofstream can output (write)

values to a file. (like cout)
! objects of type ifstream can input (read)

values from a file. (like cin)

4

Opening Files

! To input from a file, declare an ifstream
variable and open a file by its name.

! To output to a file, declare an ofstream
variable, and open a file by its name.

! If the file “myoutputfile.txt” does not exist, it will
be created.

! Stream variable is associated with the file.

ifstream someFile;
someFile.open(“mydatafile.txt”);

ofstream anotherFile;
anotherFile.open(“myoutputfile.txt”);

5

Closing Files

! To close a file stream when you are done
reading/writing:

! Not required, but good practice.

someFile.close();
anotherFile.close();

6

Writing to Files

! Use the stream insertion operator: <<
#include <iostream>
#include <fstream>
using namespace std;

int main() {
 ofstream outFile;
 outFile.open(“demofile.txt”);

 int age;
 cout << “Enter your age: “;
 cin >> age;

 outFile << “Age is: “ << age << endl;
 outFile.close();

 return 0;
}

7

Reading from Files

! Stream extraction operator: >>
Names.txt:
Tom
Dick
Harry

char name[25];

ifstream inFile;
inFile.open(“Names.txt”);
inFile >> name;

cout << name;
inFile.close();

8

Reading from Files

! When opened, file stream's read position
points to first character in file.

! extraction operator (>>) starts at read position
and skips whitespace to read data into the
variable.

! The read position then points to whitespace
after the value it just read.

9

Reading Example
24 13
34 100data.txt:

ifstream inFile;
inFile.open(“data.txt”);

int a, b;

inFile >> a;
cout << a << “ “;

inFile >> a >> b;
cout << a << “ “ << b << endl;

inFile.close();

What is output by this code segment?

10

2.12 Scope

! A variable's scope is the part of the program
that has access to the variable.

! Rule 1: A variable cannot be used before it is
defined.
#include <iostream>
using namespace std;

int main () {

 value = 150; //error, use of value before it is defined

 int value;
 cout << value;
}

11

3.6 Named Constants

! Literals do not have “meaningful names”

" what is the meaning of .0825?
! Same literal may be used throughout a

program, but may want to change it later.
" maybe .0825 occurs in dozens of places in

the code.
" search and replace problem.

cost = price + (price * .0825);

12

3.6 Named Constants

! Literals may be given names to be used in
their place.

! const makes the variable read-only
! initialization required
! All-caps for the name of the constant is just a

convention

const double SALES_TAX_RATE = .0825;

cost = price + (price * SALES_TAX_RATE);

13

3.7 Multiple Assignment

! You can assign the same value to several
variables in one statement:

! is equivalent to:
a = b = c = 12;

a = 12;
b = 12;
c = 12;

14

3.7 Combined Assignment

! Assignment statements often have this form:

! C/C++ offers shorthand for these:

number = number + 1; //add 1 to number
total = total + x; //add x to total
y = y / 2; //divide y by 2

int number = 10;
number = number + 1;
cout << number << endl;

number += 1; // short for number = number+1;
total -= x; // short for total = total-x;
y /= 2; // short for y = y / 2;

15

3.11 More Mathematical Library
Functions

pow y = pow(x,d); returns x raised to the power d

abs y = abs(x); returns absolute value of x

sqrt y = sqrt(x); returns square root of x

sin y = sin(x); returns the sine of x (in radians)

etc.

16

3.12 Hand Tracing a Program

int main() {
 double num1, num2, num3, avg;
 cout << “Enter first number”;
 cin >> num1;
 cout << “Enter second number”;
 cin >> num2;
 cout << “Enter third number”;
 cin >> num3;

 avg = num1 + num2 + num3 / 3;

 cout << “The average is ” << avg
 << endl;
}

! You be the computer. Track the values of the
variables as the program executes.

