Binary Representation

CS 1428
Fall 2011
Jill Seaman
Lecture 8

Binary Number Representation

- Computer memory is a sequence of switches, on or off: $O N=1$, $O F F=0$.
- All values are stored in the computer as a series of ones and zeroes (binary format).
- All data values have to be converted to and from a binary format.

Binary number system

- The binary number system has 2 digits, 0 and 1.
- We refer to these digits as "bits"
- In any number system, the value of the $\mathrm{i}^{\text {th }}$ digit dis: $d \times$ base ${ }^{i}$
- Consider the number 57 in the decimal system.

$$
\begin{aligned}
57 & =5 \times 10^{1}+7 \times 10^{0} \\
& =5 \times 10+7 \times 1 \\
& =50+7=57
\end{aligned}
$$

Converting binary to decimal

- the value of the $\mathrm{i}^{\text {th }}$ digit b is: $\mathrm{b} \times 2^{\mathrm{i}}$

$$
\begin{aligned}
& 100110 \\
& =1 \times 2^{5}+0 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0} \\
& =1 \times 32+0 \times 16+0 \times 8+1 \times 4+1 \times 2+0 \times 1 \\
& =32+0+0+4+2+0 \\
& =38
\end{aligned}
$$

Converting binary to decimal

- Or, you can consider the "value" of each position in the binary number:

32	16	8	4	2	1	$<--$ the value of each position
1	0	0	1	1	0	$<-$ the binary number

- If there is a one under the value of the position, add that number to the total:

$$
32+4+2=38
$$

Converting decimal to binary

- If the number is divisible by 2 ,
- write 0
- divide by 2 to get the next number
- else
- write 1
- subtract 1 from the number
- divide by 2 to get the next number
- Repeat with the resulting number, until you get to 0
- Add the 1 or 0 to the left of the previous value

Converting decimal to binary

- Example:

40
40 is divisible by 2 : write 0 : 0
$40 / 2=20$ is divisible by 2: write $0: \quad 00$
$20 / 2=10$ is divisible by 2 : write 0 : 000
$10 / 2=5$ is NOT divisible by 2: write 1: 1000
$(5-1) / 2=2$ is divisible by 2 : write 0 : 01000
$2 / 2=1$ is NOT divisible by 2: write 1: 101000
$(1-1) / 2=0$ DONE

- 40 decimal is 101000 in binary

Binary Arithmetic

- Just like decimal arithmetic:

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1 \\
& 1+0=1 \\
& 1+1=10(\text { carry the } 1)
\end{aligned}
$$

- Numbers with multiple digits:

```
00110
01101
----------
```


Negative numbers
 sign and magnitude

- Let's say we have only 4 bits to represent positive and negative numbers
- Let's use the leftmost bit for the sign, 1 is negative, 0 is positive
- What number is:
- 0000
- 1001
- 1000

Negative numbers

sign and magnitude

- There would be 2 values for 0
- Also, addition is broken

$$
\begin{gathered}
-3+(-3)=? \\
0011 \\
1011 \\
----110=-6 ?
\end{gathered}
$$

2's complement representation

- Leftmost bit is still the sign, but the rest of the negative number is converted differently
- only one representation for 0
- binary arithmetic still works!
- one extra negative number

Converting decimal to 2's complement

- If the number is positive:
- convert decimal to binary in the usual way
- If the number is negative:
- get the binary representation for the absolute value of the number in the usual way
- flip all the bits
- add 1 to the complement
- example:

Converting 2's complement to decimal

- If the left-most bit is 0 then convert the number in the usual way
- Else
- Subtract 1
- Flip all bits
- Convert to decimal in the usual way
- Affix a minus sign
- Example:

1010 // 2's complement binary
1001 // 1 subtracted
0110 // bits flipped
-6 // affixed the negative sign

2's complement arithmetic

- Let's add 3 and -3 again

0011
1101
0000

Decimal/sign+magnitude/2's complement

7	0111	0111
6	0110	0110
5	0101	0101
4	0100	0100
3	0011	0011
2	0010	0010
1	0001	0001
0	0000	0000
0	1000	-----
-1	1001	111
-2	1010	1110
-3	1011	1101
-4	1100	1100
-5	1101	1011
-6	1110	1010
-7	1111	1001
-----	1000	

