Binary Representation

CS 1428 Fall 2011

Jill Seaman

Lecture 8

Binary Number Representation

- Computer memory is a sequence of switches, on or off: ON = 1, OFF = 0.
- All values are stored in the computer as a series of ones and zeroes (binary format).
- All data values have to be converted to and from a binary format.

1

Binary number system

- The binary number system has 2 digits, 0 and 1.
- We refer to these digits as "bits"
- In any number system, the value of the ith digit d is: d x baseⁱ

3

Consider the number 57 in the decimal system.

 $57 = 5 \times 10^{1} + 7 \times 10^{0}$ = 5 x 10 + 7 x 1 = 50 + 7 = 57

- If the number is negative:
 - get the binary representation for the absolute value of the number in the usual way
 - flip all the bits
 - add 1 to the complement

-3

example:

- 0011 // 4-bit binary for absolute value of -3 1100 // all bits flipped
- 1101 // 1 added to the complement

Converting 2's complement to decimal

 If the left-most bit is 0 then convert the number in the usual way

Else

- Subtract 1
- Flip all bits
- Convert to decimal in the usual way
- Affix a minus sign
- Example:
- 1010 // 2's complement binary 1001 // 1 subtracted 0110 // bits flipped -6 // affixed the negative sign

Decimal/sign+magnitude/2's complement

7	0111	0111
6	0110	0110
5	0101	0101
4	0100	0100
3	0011	0011
2	0010	0010
1	0001	0001
0	0000	0000
0	1000	
-1	1001	1111
-2	1010	1110
-3	1011	1101
-4	1100	1100
-5	1101	1011
-6	1110	1010
-7	1111	1001
-8		1000

15