Exam 2 Review

CS 2308
Fall 2011

Jill Seaman

Exam 2

» Thursday, October 10

* In class, closed book, closed notes, clean desk
» 20% of your final grade

* 80 minutes to complete it

* | recommend using a pencil (and eraser)

* | will bring scratch paper.

* No calculators.




— N

Exam Format

100 points total

Plenty of writing programs/functions/classes/code

Some combination of:

Tracing code/finding errors in code (a little)
Short answer (a lot)
Fill in the blank

Lots of concepts in this material

\ -

— N

xample Programming Problems

Write a function countDigits that takes a string
as an argument and outputs the number of
digits it contains.

Define and implement the Time class




—

Draw (and label) a diagram of memory produced by the following
code:

Example Tracing Problem

struct Node {
int data;
Node *next;

}i

Node *head = NULL;
Node *ptr = new Node;
Node *temp;

ptr->data = 42;

temp = head;
ptr->next = head;
temp = ptr;

head = new Node;

head ->data 55;
head ->next temp;

\ -

| Programming on Linux

Lecture 7

Why split code into separate files?
How to split up the files (what goes where)
Header files, Header files as interfaces

How to compile multiple files
g++ all of them
separate compilation: g++ -c ...
K makefile, how it works




| Ch.10: Strings and Things
Lectures 8 and 9
» Character testing + conversion
- isalpha, isdigit, isupper, islower, isspace
- toupper tolower
« C-strings
- definition, \O’ -terminated
- why null-terminated
* C-strings: library functions
- strlen
- strcpy (assignment)
- strcemp (test, comparison)

\ —

| Ch.10: Strings and Things (cont.)
Lectures 8 and 9
* Predefined string class
- how to define and initialize instances
* operations:
- =, <<, >> relational ops, [n] (subscript)
* member functions
- length()
- size()
- append(str)
* know how to use all these to write code




' Ch.13+14: Classes

Lectures 10 thru 14
Procedural programming
What it is
What kind of problems (handling change)
Object oriented programming:

What it is
How it solves problems of procedural problems
encapsulation

data (or information) hiding

interface

class vs instance (object)

K accessor (getter)/ mutator (setter): why?

——

| Ch.13+14: Classes (cont)

Lectures 10 thru 14
Separating specifications from implementation
What goes where
What are the advantages?
How to compile
Declaring a class:

Members: variables and functions
private vs public, access rules
syntax: class declaration

syntax: member function definitions
How to define instances

K How to access members

10




| Ch.13+14: Classes (cont)

\

Lectures 10 thru 14
What is stale data?

Constructors

How to name, return type?

When are they called? what do they do?

Default constructor

passing args to constructors
Destructors

what it is, how to name, when is it called?
Overloaded constructors and member functions

11

| Ch.13+14: Classes (cont)

Lectures 10 thru 14
Instance vs Static Members: variables+functions

Memberwise assignment

Copy Constructor
Default copy constructor
When to define your own
When is it used? (initialization only)
Operator overloading
syntax of definition, use
how to overload assignment, relational operators

12




| Ch.16.1: Exceptions

Lectures 15
* How to throw an exception

* Try/catch statement (syntax, semantics)
* How to use in combination

* What happens if the thrown exception is not
caught?

13

N -

11.9, 13.3: Pointers to Struct, Object

Lectures 15

* How to declare, assign
* How to access members through the pointer
- (*p)-member, p->member, *(p.member)

» dynamic allocation of structures, objects, arrays
of structure/objects

* When an object is deleted, destructor is called
* the “this” pointer

14




| Ch.17: Linked Lists

Lecture 16
Dynamically allocated list data structure

Organization: nodes, head pointer, empty list

Declaring a linked list datatype
(class declaration)

The operations, in general
constructor

appendNode

finding the last node
traversing a linked list.

15

Start with the slides/presentations

Read book to understand slides
Review assignments + solutions

How to Study

Do some exercises from the book

Fill-in-the-Blank (vocabulary, concepts)

Algorithm workbench

Find the Error

Programming Challenges (first few of these)
Be prepared to explain some things in Englléish.

\ —




