
1

Exam 2 Review

CS 2308
Fall 2011

Jill Seaman

2

Exam 2
 Thursday, October 10
 In class, closed book, closed notes, clean desk
 20% of your final grade
 80 minutes to complete it
 I recommend using a pencil (and eraser)
 I will bring scratch paper.
 No calculators.

3

Exam Format

 100 points total
✴ Plenty of writing programs/functions/classes/code
✴ Some combination of:

- Tracing code/finding errors in code (a little)
- Short answer (a lot)
- Fill in the blank

✴ Lots of concepts in this material

4

Example Programming Problems

Write a function countDigits that takes a string
as an argument and outputs the number of
digits it contains.

Define and implement the Time class

5

Example Tracing Problem
Draw (and label) a diagram of memory produced by the following
code:

struct Node {
 int data;
 Node *next;
};

Node *head = NULL;
Node *ptr = new Node;
Node *temp;
ptr->data = 42;
temp = head;
ptr->next = head;
temp = ptr;
head = new Node;
head ->data = 55;
head ->next = temp;

6

Programming on Linux
Lecture 7

 Why split code into separate files?

 How to split up the files (what goes where)

 Header files, Header files as interfaces

 How to compile multiple files
- g++ all of them
- separate compilation: g++ -c ...
- makefile, how it works

7

Ch.10: Strings and Things
Lectures 8 and 9

 Character testing + conversion
- isalpha, isdigit, isupper, islower, isspace
- toupper tolower

 C-strings
- definition, ‘\0’ -terminated
- why null-terminated

 C-strings: library functions
- strlen
- strcpy (assignment)
- strcmp (test, comparison)

8

Ch.10: Strings and Things (cont.)
Lectures 8 and 9

 Predefined string class
- how to define and initialize instances

 operations:
- =, <<, >>, relational ops, [n] (subscript)

 member functions
- length()
- size()
- append(str)

 know how to use all these to write code

9

Ch.13+14: Classes
Lectures 10 thru 14

 Procedural programming
- What it is
- What kind of problems (handling change)

 Object oriented programming:
- What it is
- How it solves problems of procedural problems
- encapsulation
- data (or information) hiding
- interface
- class vs instance (object)
- accessor (getter)/ mutator (setter): why?

10

Ch.13+14: Classes (cont)
Lectures 10 thru 14

 Separating specifications from implementation
- What goes where
- What are the advantages?
- How to compile

 Declaring a class:
- Members: variables and functions
- private vs public, access rules
- syntax: class declaration
- syntax: member function definitions
- How to define instances
- How to access members

11

Ch.13+14: Classes (cont)
Lectures 10 thru 14

 What is stale data?
 Constructors

- How to name, return type?
- When are they called? what do they do?
- Default constructor
- passing args to constructors

 Destructors
- what it is, how to name, when is it called?

 Overloaded constructors and member functions

12

Ch.13+14: Classes (cont)
Lectures 10 thru 14

 Instance vs Static Members: variables+functions
 Memberwise assignment
 Copy Constructor

- Default copy constructor
- When to define your own
- When is it used? (initialization only)

 Operator overloading
- syntax of definition, use
- how to overload assignment, relational operators

13

Ch.16.1: Exceptions
Lectures 15

 How to throw an exception
 Try/catch statement (syntax, semantics)
 How to use in combination
 What happens if the thrown exception is not

caught?

14

11.9, 13.3: Pointers to Struct, Object
Lectures 15

 How to declare, assign
 How to access members through the pointer

- (*p).member, p->member, *(p.member)
 dynamic allocation of structures, objects, arrays

of structure/objects
 When an object is deleted, destructor is called
 the “this” pointer

15

Ch.17: Linked Lists
Lecture 16

 Dynamically allocated list data structure
 Organization: nodes, head pointer, empty list
 Declaring a linked list datatype

(class declaration)
 The operations, in general
 constructor
 appendNode
 finding the last node
 traversing a linked list.

16

How to Study
 Start with the slides/presentations
 Read book to understand slides
 Review assignments + solutions
 Do some exercises from the book

✴ Fill-in-the-Blank (vocabulary, concepts)
✴ Algorithm workbench
✴ Find the Error
✴ Programming Challenges (first few of these)

 Be prepared to explain some things in English.

