
1

Final Exam Review Exercises

CS 2308
Fall 2011

Jill Seaman

2

Chapters 1-7
Write C++ code to:
 Determine if a number is odd or even
 Determine if a number/character is in a range

- 1 to 10 (inclusive)
- between ‘a’ and ‘z’ (inclusive)

 Determine if one structure/object (Movies) is
- equal to another
- greater than (or less than) another

 Assign a category based on ranges (BMI)

3

Chapters 1-7
Write C++ code to:
 Pass arguments by value and reference

- Return multiple values from a function:
 compute the area and perimeter of a rectangle

 Process an Array:
- find maximum/minimum value
- count values passing a test (>100)
- sum/average values passing a test (>100)

4

Ch. 8:Searching and Sorting

Describe each of the following algorithms in
English:

 Linear Search
 Binary Search
 Bubble Sort
 Selection Sort

5

Example Searching Problem
The target of your search is 42. Given the following list of integers,
fill in the following table with the values that you would compare
to the target while executing a:
a) linear search
b) binary search (write the value, not the index to the array).
Assume the following numbers are in an array.

!1 7 8 14 20 42 55 67 78 101 112 122 170 179 190

 ! !

Repeat the exercise with a target of 82

6

Example Sorting Problem
Given the following list of integers, show what order the integers
would be in after executing one complete, single pass of a:
a) bubble sort
b) selection sort.
Assume the following numbers are in an array.

!112 73 8 140 22 42 88 67 9 190

 ! !

7

Algorithm Efficiency
Big O Notation

• In order of increasing growth (less efficiency)
- O(1) constant
- O(log n) logarithmic
- O(n) linear
- O(n log n) linearithmic
- O(n2) quadratic

• when using big O notation to describe the
efficiency of an algorithm:

- what is n?
- what does the function inside the () describe?

8

Algorithm Efficiency
Give the efficiency of each using big-O notation

 Linear search
 Binary search on an already sorted list
 Bubble sort
 Selection sort
 Access one element in an array
 Array processing:

- sum, average, show list, find max/min
- delete all elements

9

Algorithm Efficiency
Give the efficiency of each using big-O notation

 Linked list operations:
- insert at head
- append
- delete (removeOne)
- destructor (“delete” all nodes)
- access one element (by index)
- sum, average, show list, find max/min (traversal)
- selection sort, as we did in Assign 6

10

Pointers
 Tracing code with pointers, what is output?

int *ptr1, *ptr2;
int foo1, foo2 = 13;

ptr1 = &foo1;
ptr2 = &foo2;
foo1 = 42;
cout << "*ptr1 - " << *ptr1 << endl;
cout << "*ptr2 - " << *ptr2 << endl;

ptr1 = ptr2;
cout << "foo1 - " << foo1 << endl;
cout << "foo2 - " << foo2 << endl;

ptr2 = &foo1;
*ptr1 = *ptr2;
cout << "foo1 - " << foo1 << endl;
cout << "foo2 - " << foo2 << endl;

11

Pointers
 Rewrite the loop using pointer notation:

 Write a function to dynamically allocate a new
array of integers of a given size.
- who is responsible for deallocating this dynamically

allocated array? What statement is used to
deallocate it?

for (int x = 0; x < 100; x++)
 cout << array[x] << endl;

12

Linux Commands
 What linux command would you use to:

A. List (display) the files in the current directory?
B. Display the name of the current directory?
C. Make a new directory called Assignments?
D. Make Assignments the current directory?
E. Edit a file called myFile.txt?
F. Compile a file called myProg.cpp?
G. View the contents of myProg.cpp on the screen?
H. Delete the file myProg.cpp?
I. Execute a makefile?
J. Compile a file called a.cpp to an object file?

13

Classes
 What is the error? (hint: it’s a syntax error)

class Time {
 private:
 int hour;
 int minute;
 public:
 void addMinute();
 void addHour();
};

void addMinute() {
 if (minute==59) {
 minute=0;
 addHour();
 } else
 minute++;
}

14

Classes
 Given the following Time class:

 Circle the copy constructor prototype
 If t1 is an existing Time object, use the copy

constructor to initialize a new Time object t from
t1:

class Time {
 private:
 int hour;
 int minute;
 public:
 Time();
 Time(int, int);
 Time(Time &);
};

15

Classes
 What is output?

class Time24 {
 private:
 int hour, minute;
 public:
 Time24(int,int);
 void display();
};
Time24::Time24(int h, int m) { hour = h; minute = m; }
void Time24::display() {
 string ampm = “am”;
 if (hour > 12) {
 int hour = hour-12;
 ampm = “pm”;
 }
 cout << hour << “:” << minute << ampm << endl;
}

int main () { Time24 t(14,23); t.display(); }

16

Syntax you should know
 const in member function definition

 Alternative constructor syntax:

 is equivalent to:

class Time {
 private:
 int hour, minute;
 public:
 int getHour() const;
 Time();
 };

const here indicates the function
will NOT change any of the
member variables’ values

Time::Time () {
 hour = 12;
 minute = 0;
}

 Time::Time() : hour(12), minute(0) { }

17

Syntax you should know
 setiosflags

 cout << setiosflags(ios::fixed | ios::showpoint);

 cout << fixed << showpoint; These statements are equivalent.

18

Linked Lists
 Write a function that takes an array of ints and

converts it to a linked list by inserting each
element to the front of the list (the order will be
reversed).

struct Node {
 int data;
 Node *next;
};

Node *convertReverse (int list[], int size) {

}

19

Linked Lists
 Write a function that takes an array of ints and

converts it to a linked list by inserting each
element to the front of the list (the order will be
reversed).

struct Node {
 int data;
 Node *next;
};

Node *convertReverse (int list[], int size) {
 Node *head = NULL;
 for (int i=0; i<size; i++) {
 Node *newNode = new Node;
 newNode->data = list[i];
 newNode->next = head;
 head = newNode;
 }
 return head;
}

20

Stacks and Queues

Describe in English how to use a stack to:

 determine if the brackets are matched in a string
(or a file).

 evaluate expressions written in post-fix notation.

21

Stacks and Queues
exercises

Suppose the following operations are performed
on an empty stack. Insert numbers in the diagram
to show what will be stored in the stack after the
operations have executed (label the top):

int x;
push(3);
push(5);
push(9);
pop(x);
push(2);
pop(x);
push(0);

22

Stacks and Queues
exercises

Suppose the following operations are performed
on an empty queue. Insert numbers in the diagram
to show what will be stored in the queue after the
operations have executed (label the front+rear):

int x;
enqueue(3);
enqueue(5);
enqueue(9);
dequeue(x);
enqueue(2);
dequeue(x);
enqueue(0);

23

Disclaimer
 The exercises in this lecture do not cover ALL of

the material that will be on the final exam.
 These exercises do provide some sample exam

questions.
 There will be questions that will require writing

programs or functions or class declarations and
implementations.

 There will be questions (short answer, multiple
choice) that will test your understanding of the
concepts we have covered (vocabulary, etc).

