
1

Ch 8. Searching and Sorting Arrays
Part 1

CS 2308
Fall 2011

Jill Seaman

Lecture 1

2

Definitions of Search and Sort

! Search: find an item in an array, return the
index to the item, or -1 if not found.

! Sort: rearrange the items in an array into some
order (smallest to biggest, alphabetical order,
etc.).

! There are various methods (algorithms) for
carrying out these common tasks.

! Goal: compare the efficiency of the algorithms.

3

Linear Search

! Very simple method.
! Compare first element to target value,

if not found then compare second element to
target value . . .

! Repeat until target value is found
(return its index) or
we run out of items (return -1).

4

Linear Search in C++

int searchList (int list[], int numElems, int value) {

 int index=0; //index to process array
 int position = -1; //record position of value
 bool found = false; //flag, true when value is found

 while (index < numElems && !found)
 {
 if (list[index] == value) //found the value!
 {
 found = true; //set the flag
 position = index; //record which item
 }
 index++; //increment loop index
 }
 return position;
}

5

Questions

! Why not a for loop?
! Why return -1 for not found?

6

Program using Linear Search
#include <iostream>
using namespace std;

int searchList(int[], int, int);
const int SIZE=5;

int main() {
 int idNums[SIZE] = {871, 750, 988, 100, 822};
 int results, id;

 cout << “Enter the employee ID to search for: “;
 cin >> id;

 results = searchList(idNums, SIZE, id);

 if (results == -1) {
 cout << “That id number is not registered\n”;
 } else {
 cout << “That id number is found at location “;
 cout << results+1 << endl;
 }

 return 0;
}

7

Efficiency of Search Algorithms

! We measure efficiency of algorithms in terms
of number of main steps required to finish.

! For search algorithms, the main step is
comparing array element to the target value.

! Number of steps depends on:
" size of input array
" whether or not value is in array
" where the value is in the array

8

Efficiency of Linear Search
N=50,000 In terms of N

Best Case: 1 1

Average Case: 25,000 N/2

Worst Case: 50,000 N

*N is the number of elements in the array

Note: if we search for items not in the array, the average
case will increase.

9

Binary Search

! Works only for SORTED arrays
! Compare target value to middle element in

array.
" if equal, then return index
" if less than middle elem, search in first half
" if greater than middle elem, search in last half

! If search list is narrowed down to 1 elem, and
it is not equal to target value, return -1

! Divide and conquer style algorithm

10

Binary Search Algorithm
The algorithm described in pseudocode:

location = -1;
first = 0;
last = number of items in list minus 1;

while ((number of items left to search >= 1) and
 (target not found))
 middle = pos of middle item, ½-way between first and last
 if (item at middle position is target)
 target found
 location = middle
 else
 if (target < middle item)
 search lower half of list next:
 last = middle - 1;
 else
 search upper half of list next:
 first = middle + 1;
end while

11

Binary Search in C++
int binarySearch (int array[], int numElems, int value) {

 int first = 0, //index to first elem
 last = numElems – 1, //index to last elem
 middle, //index of middle elem
 position = -1; //index of target value
 bool found = false; //flag

 while (!found && first <= last) {

 middle = (first + last) /2; //calculate midpoint

 if (array[middle] == value) {
 found = true;
 position = middle;
 } else if (array[middle] > value) {
 last = middle – 1; //search lower half
 } else {
 fisrt = middle + 1; //search upper half
 }
 }
 return position;
}

12

Program using Binary Search
#include <iostream>
using namespace std;

int binarySearch(int[], int, int);
const int SIZE=5;

int main() {
 int idNums[SIZE] = {100, 750, 822, 871, 988};
 int results, id;

 cout << “Enter the employee ID to search for: “;
 cin >> id;

 results = binarySearch(idNums, SIZE, id);

 if (results == -1) {
 cout << “That id number is not registered\n”;
 } else {
 cout << “That id number is found at location “;
 cout << results+1 << endl;
 }

 return 0;
}

13

Efficiency of Binary Search
Calculate worst case for N=1024

Num items left to search Comparisons so far
1024 0
512 1
256 2
128 3
64 4
32 5
16 6
8 7
4 8
2 9
1 10

If 1024 = 210 then what does 10 = ?

14

Efficiency of Binary Search

N=50,000 In terms of N

Best Case: 1 1

Worst Case: 15.6 log
2
 N

*N is the number of elements in the array

Is log
2
 N (binary search) better than N (linear search)?

[Is it really fair to compare these two algorithms?]

15

Is Log
2
 N better than N?

Compare values of N/2, N, and Log
2
 N as N increases:

N N/2 Log
2
 N

5 2.5 2.3
50 25 5.6
500 250 9
5,000 2,500 12.3
50,000 25,000 15.6

observation: n/2 is growing much faster than log n!

slower growing is more efficient.

16

Classifications of (math) functions

! Constant y=b O(1)
! Logarithmic y=log

b
(x) O(log n)

! Linear y=ax+b O(n)
! Linearithmic y=x log

b
(x) O(n log n)

! Quadratic y=ax2+bx+c O(n2)
! Exponential y=bx O(2x)

Last column is “big Oh notation” used in CS

17

Some graphs

18

Some more graphs

19

Efficiency of Algorithms

! To classify efficiency of an algorithm:
" Express “time” as a function of input
" Determine which classification the function fits

into.
! Nearer to the top is slower growth, and more

efficient (constant is better than logarithmic,
etc.)

