
1

Ch 13: Introduction to Classes
Part 1

CS 2308
Fall 2011

Jill Seaman

Lecture 10

2

The Class
 A class in C++ is similar to a structure.

- It allows you to define a new (composite)
data type.

 A class contains:
- variables AND
- functions

 These are called members
• Members can be:

- private: unaccessible outside the class
- public: accessible outside the class.

3

Example class declaration

 Example: time.h
// file time.h
#include <string>
using namespace std;

 class Time //new data type
 {
 // models a 12 hour clock
 private:
 int hour;
 int minute;
 void addHour();

 public:
 void setHour(int);
 void setMinute(int);

 string display();
 void addMinute();

 };

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

4

Access rules

 Private members can be accessed only from
other member functions within the class

- hour and minute cannot be accessed outside
- must use setHour(int) and setMinute(int) to

assign the minute values.
- No way in this class to directly get the hours or

the minutes.
 The public members provide the interface which

defines how code outside the class can use
instances (objects) of the Time data type.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

5

Defining Member Functions
 the Time.cpp file:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

// file time.cpp
#include <sstream>
#include <iomanip>
using namespace std;

#include "time.h"

void Time::setHour(int hr) {
 hour = hr; // hour is a member var
}
void Time::setMinute(int min) {
 minute = min; // minute is a member var
}

void Time::addHour() { // a private member func
 if (hour == 12)
 hour = 1;
 else
 hour++;
}

6

Defining Member Functions
 the Time.cpp file cont.:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

void Time::addMinute()
{
 if (minute == 59) {
 minute = 0;
 addHour(); // call to private member func
 } else
 minute++;
}

string Time::display()
// returns time in string formatted to hh:mm
{
 ostringstream sout;
 sout.fill('0');
 sout << hour << ":" << setw(2) << minute;
 return sout.str();
}

7

Defining member functions

 Member function definitions occur OUTSIDE of
the class definition, usually in a separate file.

 The name of each function is preceded by the
class name and :: operator

- Time::setHour(int hr)

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

8

Defining an instance of the class

 ClassName objectname:

 This defines t1 to contain an object of type Time.
 Access public members of class with dot

notation:

 Use dot notation OUTSIDE class only.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Time t1;

t1.setHour(3);
t1.setMinute(41);
t1.addMinute();

9

A driver progam that uses Time

 File driver.cpp:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

//using Time class (driver.cpp)
#include<iostream>
#include "time.h"
using namespace std;

int main() {
 Time t;
 t.setHour(12);
 t.setMinute(58);
 cout << t.display() <<endl;
 t.addMinute();
 cout << t.display() << endl;
 t.addMinute();
 cout << t.display() << endl;
 return 0;
}

10

How to compile class + driver

• The quick and dirty way:

• And execute:

[...]$./a.out
12:58
12:59
1:00

[...]$ g++ driver.cpp time.cpp

11

Makefile

 makefile:

 Note: “timeTest” is the name of the executable
file in this example (not a.out).

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

#makefile

timeTest: driver.o time.o
! g++ driver.o time.o -o timeTest

driver.o: driver.cpp time.h
! g++ -c driver.cpp

time.o: time.cpp time.h
! g++ -c time.cpp

12

Compile class + driver using make

• Make:

• Execute:

[...]$ make
g++ -c driver.cpp
g++ -c time.cpp
g++ driver.o time.o -o timeTest

[...]$./timeTest
12:58
12:59
1:00

13

Do not store stale data

 Why not store display string in a variable instead
of composing it every time?

 Because it could become stale.
- If the minute or hour changes, then the data in

the object would be inconsistent:
- stored display string would not match new hours

and minutes.
• Don’t store any data that could become stale,

compute it in a member function instead.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

