
1

Ch 13: Introduction to Classes
Part 1

CS 2308
Fall 2011

Jill Seaman

Lecture 10

2

The Class
 A class in C++ is similar to a structure.

- It allows you to define a new (composite) 
data type.

 A class contains:
- variables AND
- functions

 These are called members
• Members can be:

- private: unaccessible outside the class
- public: accessible outside the class.



3

Example class declaration

 Example: time.h
// file time.h
#include <string>
using namespace std;
 
  class Time        //new data type
  {
    // models a 12 hour clock
    private:
      int hour;
      int minute;
      void addHour();

    public:
      void setHour(int);
      void setMinute(int);

      string display();
      void addMinute();

  };

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

4

Access rules

 Private members can be accessed only from 
other member functions within the class

- hour and minute cannot be accessed outside
- must use setHour(int) and setMinute(int) to 

assign the minute values.
- No way in this class to directly get the hours or 

the minutes.
 The public members provide the interface which 

defines how code outside the class can use 
instances (objects) of the Time data type.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;



5

Defining Member Functions
 the Time.cpp file:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

// file time.cpp
#include <sstream>
#include <iomanip>
using namespace std;

#include "time.h"

void Time::setHour(int hr) {
  hour = hr;           // hour is a member var
}
void Time::setMinute(int min) {
  minute = min;        // minute is a member var
}

void Time::addHour() {  // a private member func
  if (hour == 12)
     hour = 1;
  else
     hour++;
}

6

Defining Member Functions
 the Time.cpp file cont.:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

void Time::addMinute()
{
  if (minute == 59) {
     minute = 0; 
     addHour();   // call to private member func
  } else
     minute++;
}

string Time::display()
// returns time in string formatted to hh:mm
{
   ostringstream sout;
   sout.fill('0');
   sout << hour << ":" << setw(2) << minute;
   return sout.str();
}



7

Defining member functions

 Member function definitions occur OUTSIDE of 
the class definition, usually in a separate file.

 The name of each function is preceded by the 
class name and :: operator

- Time::setHour(int hr)

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

8

Defining an instance of the class

 ClassName objectname:

 This defines t1 to contain an object of type Time.
 Access public members of class with dot 

notation:

 Use dot notation OUTSIDE class only.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Time t1; 

t1.setHour(3);
t1.setMinute(41);
t1.addMinute(); 



9

A driver progam that uses Time

 File driver.cpp:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

//using Time class (driver.cpp)
#include<iostream>
#include "time.h"
using namespace std;

int main() {
  Time t;
  t.setHour(12);
  t.setMinute(58);
  cout << t.display() <<endl;
  t.addMinute();
  cout << t.display() << endl;
  t.addMinute();
  cout << t.display() << endl;
  return 0;
}

10

How to compile class + driver

• The quick and dirty way:

• And execute:

[...]$ ./a.out
12:58
12:59
1:00

[...]$ g++ driver.cpp time.cpp



11

Makefile

 makefile:

 Note: “timeTest” is the name of the executable 
file in this example (not a.out).

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

#makefile

timeTest: driver.o time.o
! g++ driver.o time.o -o timeTest

driver.o: driver.cpp time.h
! g++ -c driver.cpp

time.o: time.cpp time.h
! g++ -c time.cpp

12

Compile class + driver using make

• Make:

• Execute:

[...]$ make
g++ -c driver.cpp
g++ -c time.cpp
g++ driver.o time.o -o timeTest

[...]$ ./timeTest
12:58
12:59
1:00



13

Do not store stale data

 Why not store display string in a variable instead 
of composing it every time?

 Because it could become stale.
- If the minute or hour changes, then the data in 

the object would be inconsistent:
- stored display string would not match new hours 

and minutes.
• Don’t store any data that could become stale, 

compute it in a member function instead.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;


