
1

Ch 13: Introduction to Classes
Part 2

CS 2308
Fall 2011

Jill Seaman

Lecture 11

2

Procedural Programming
 Data is stored in variables

- Perhaps using arrays and structs.
 Program is a collection of functions that perform

operations over the variables
- Good example: book inventory program

 Usually variables are passed to the functions as
arguments

• Focus is on organizing and implementing the
functions.

3

Procedural Programming: Problem
 It is not uncommon for

- program specs to change
- representations of data to change for

internal improvements.
 As procedural programs become larger, more

complex, it is difficult to make changes.
- A change to a given variable or data structure

requires changes to all of the functions operating
over that variable or data structure.

4

Object Oriented Programming:
Solution

 An object contains
- data
- functions that operate over the data

 Code outside the object can access the data
only via the member functions.

 If the representation of the data in the object
needs to change:

- The member functions must be redefined to
handle the changes.

- The code outside the object does not need to
change, it accesses the object in the same way.

5

Object Oriented Programming:
Concepts

 Encapsulation: combining data and code into a
single object.

 Data hiding (or Information hiding) is the
ability to hide the details of data representation
from the code outside of the object.

 Interface: the mechanism that code outside the
object uses to interact with the object.

- The member functions
- Specifically outside code needs to know only the

function prototypes.

6

Object Oriented Programming: Real
World Example

 In order to drive a car, you need to understand
only its interface:

- ignition switch
- gas pedal, brake pedal
- steering wheel
- gear shifter

 You don’t need to understand how the steering
works internally.

 You can operate any car with the same interface.

7

Classes and Objects
 A class is like a blueprint for an object.

- a detailed description of an object.
- used to make many objects.
- these are called instances of the class.

 For example, the String class in C++.
- Make an instance or two:

- use member functions to manipulate the objects:

String cityName1(“Austin”), cityName2(“Dallas”);

int size = cityName1.length();
cityName2.insert(0,”Big “);

8

Example class declaration

 Example: time.h, modified
// file time.h
#include <string>
using namespace std;

 class Time //new data type
 {
 private:
 int hour;
 int minute;
 void addHour();

 public:
 void setHour(int);
 void setMinute(int);
 int getHour();
 int getMinute();

 string display();
 void addMinute();
 };

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

9

Access rules

 Private members can be accessed only from
other member functions within the class
- member variables (attributes) are declared private,

to hide their definitions from outside the class.
- certain functions are declared public and provide

(limited) access to the hidden/private data.
 The public members provide the interface which

defines how code outside the class can use
instances (objects) of the Time data type.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

10

Defining Member Functions
 the Time.cpp file:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

// file time.cpp
#include <sstream>
#include <iomanip>
using namespace std;

#include "time.h"

void Time::setHour(int hr) {
 hour = hr; // hour is a member var
}
void Time::setMinute(int min) {
 minute = min; // minute is a member var
}

int Time::getHour() {
 return hour;
}
int Time::getMinute() {
 return minute;
}

11

Defining member functions

 Member function definitions occur OUTSIDE of
the class definition, usually in a separate file.

 The name of each function is preceded by the
class name and :: operator
- Time::setHour(int hr)

 Accessor functions (a.k.a. “getters”)
- returns a value from the object (without changing it)

 Mutator functions (a.k.a. “setters”)
- Changes values of member variables.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

12

Defining an instance of the class

 ClassName objectname:

 This defines t1 to contain an object of type Time
(the values of hour and minute are not set).

 Access public members of class with dot
notation:

 Use dot notation OUTSIDE class only.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Time t1;

t1.setHour(3);
t1.setMinute(41);
t1.addMinute();

13

Setters and getters: what’s the
point?

 Why have setters and getters that just do
assignment and return values?

 Why not just make the member variables public?

 Setter functions can validate the incoming data.
- setMinute can make sure minutes are between 0

and 59 (if not, it can throw an exception).
 Getter functions could act as a gatekeeper to the

data (validate “user”) or provide type conversion.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

14

Separating Specs from Implementation

 Class declarations are usually stored in their
own header files (time.h) Name is usually same
as class.

 Member function definitions are stored in a
separate file (time.cpp) called the class
implementation file (must #include the header
file).

 Any program/file using the class should #include
the class’s header file.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

15

Separating Specs from Implementation

 To share/re-use a class, you can give someone
the header file and the class implementation file.
- You don’t have to give them your whole program, or

try to cut out relevant parts.
 Other programmer can just #include the header

(and compile all the files together).
 If the class implementation has to be changed,

only the class implementation file needs to
change. Then it can be recompiled/linked to the
other files.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

