
1

Ch 14: More About Classes

CS 2308
Fall 2011

Jill Seaman

Lecture 14

Using content from textbook slides: Starting Out with C++, Gaddis, Pearson/Addison-Wesley

2

Instance and Static Members
 instance variable: a member variable in a class.

Each object (instance) has its own copy.

 static variable: one variable shared among all
objects of a class

 static member function:
- can be used to access static member variable;
- can be called before any objects are defined;
- cannot access instance variables

3

Tree class declaration

 // Tree class
class Tree {
 private:
 static int objectCount;
 public:
 Tree();
 int getObjectCount();
};

// Definition of the static member variable, written
// outside the class.
int Tree::objectCount = 0;

// Member functions defined
Tree::Tree() {
 objectCount++;
}
int Tree::getObjectCount() {
 return objectCount;
}

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

4

Program demo of static variable

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

#include <iostream>
using namespace std;
#include "Tree.h"

int main() {
 Tree oak;
 Tree elm;
 Tree pine;

 cout << “We have “ << pine.getObjectCount()
 << “Trees in our program.\n”;
 return 0;
}

5

Three Instances of the Tree Class,
But Only One objectCount Variable

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

6

static member function

 Declared with static before return type:

 Static member functions can access static
member data only

 Can be called independently of objects (use
class name):

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

static int getObjectCount();

cout << “We have “ << Tree::getObjectCount()
 << “Trees in our program.\n”;

static int getObjectCount();

int Tree::getObjectCount() {
 return objectCount;
}

7

Memberwise Assignment
 Can use = to

- assign one object to another, or
- initialize an object with another object’s data

 Copies member to member. e.g.,

means: copy all member values from instance1
and assign to the corresponding member
variables of instance2

 Used at initialization:
 Used to pass function parameters by value

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

instance2 = instance1;

Time t2 = t1;

8

Memberwise assignment: demo

• Time t1 = Time(10, 20);
Time t2 = Time(12, 40);

cout << “t1: “ << t1.display() << endl;
cout << “t2: “ << t2.display() << endl;

t2 = t1;

cout << “t1: “ << t1.display() << endl;
cout << “t2: “ << t2.display() << endl;

Output:
t1: 10:20
t2: 12:40
t1: 10:20
t2: 10:20

t2 = t1; //equivalent to:
t2.hour = t1.hour;
t2.minute = t1.minute;

9

Copy Constructors

 Special constructor used when a newly created
object is initialized using another object of same
class.

- This includes passing arguments by value

 Default copy constructor copies field-to-field
(memberwise assignment)

 Default copy constructor works fine in many
cases

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

10

SomeClass declaration

 Problem: what if object contains a pointer?

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class SomeClass
{
 private:
 int *value; //ptr to int
 public:
 SomeClass(int val);
 ~SomeClass();
 int getVal();
 void setVal(int);
};

11

SomeClass Implementation

 Implentation of SomeClass

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

#include "SomeClass.h"

SomeClass::SomeClass(int val) {
 value = new int;
 *value = val;
}

SomeClass::~SomeClass() {
 delete value;
}

void SomeClass::setVal(int val) {
 *value = val;
}

int SomeClass::getVal() {
 return *value;
}

12

Problem with memberwise-
assignment for initialization

 What we get from memberwise assignment in
objects containing dynamic memory (ptrs):

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

SomeClass object1(5);
SomeClass object2 = object1; //object2.value=object1.value

object2.setVal(13);
cout << object1.getVal();

object1 object2

value value

13

Output: 13

13

Programmer-Defined
Copy Constructor

 Prototype and definition of copy constructor:

 Copy constructor takes a reference parameter
to an object of the class
- otherwise it would use initialization to create the obj

parameter, which would call the copy constructor for
SomeClass: this is an infinite loop

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

SomeClass::SomeClass(SomeClass &obj)
{
 value = new int;
 *value = obj.getValue(); //or *(obj.value)
}

static int getObjectCount();

SomeClass(SomeClass &obj); Add to class declaration

14

Programmer-Defined
Copy Constructor

 Each object now points to separate dynamic
memory:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

SomeClass object1(5);
SomeClass object2 = object1; //now calls copy constr

object2.setVal(13);
cout << object1.getVal();

object1 object2

value value

135

Output: 5

15

Copy Constructor: limitations
 Copy constructor is called ONLY during

initialization of an object, NOT during
assignment.

 If you use assignment with SomeClass, you will
still end up with memberwise-assignment and a
shared value:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

SomeClass object1(5);
SomeClass object2(0);
object2 = object1; //object2.value=object1.value

object2.setVal(13);
cout << object1.getVal(); Output: 13

16

Operator Overloading
 Operators such as =, +, and others can be

redefined to work over objects of a class
 The name of the function defining the over-

loaded operator is operator followed by the
operator symbol:
operator+ to overload the + operator, and
operator= to overload the = operator

 Just like a regular member function:
- Prototype goes in the class declaration
- Function definition goes in implementation file

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

17

Operator Overloading

 Prototype in class declaration:

 operator= is the function name
 SomeClass &rhs is the parameter for the right

hand side of operator.

 The operator function is called via object on left
side

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

void operator= (SomeClass &rhs);

static int getObjectCount();

18

Invoking an Overloaded Operator

 Operator can be invoked as a member function:

 It can also be invoked using the more
conventional syntax:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

object1.operator=(object2);

static int getObjectCount();

object1 = object2;

19

Overload = for SomeClass

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class SomeClass
{
 private:
 int *value;
 public:
 SomeClass(SomeClass &obj);
 SomeClass(int);
 ~SomeClass();
 int getVal();
 void setVal(int);
 void operator= (SomeClass &rhs);
};

void SomeClass::operator= (SomeClass &rhs) {
 setVal(rhs.getVal());
}

SomeClass object1(5), object2(0);
object2 = object1;
object2.setVal(13);
cout << object1.getVal() << endl;

Output: 5

20

Returning a Value

 An overloaded operator can return a value

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class Time
{
! private:
! int hour, minute;
! public:
! int operator- (Time &right);
};

int Time::operator- (Time &right) {
 return (hour%12)*60+minute -
 ((right.hour%12)*60+right.minute);
}

Time time1(12,20), time2(4,40);
int minutesDiff = time2 - time1;
cout << minutesDiff << endl; Output: 260

21

Overloaded Operators

 Cannot change the number of operands of the
operator or the return type

 Overloaded relational operators should return a
bool value

 I recommend avoiding using overloaded
operators in expressions with <<
(assign the result of the operation to a variable,
then output the variable).

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

