
1

 Exceptions, Pointers to Structs,
Pointers to Objects

CS 2308
Fall 2011

Jill Seaman

Lecture 15

Using content from textbook slides: Starting Out with C++, Gaddis, Pearson/Addison-Wesley

2

16.1 : (simple) Exceptions

 Indicate that something unexpected has
occurred or been detected

 Allow program to deal with the problem in a
controlled manner

 Can be as simple or complex as program design
requires

3

Exceptions - Terminology

 Exception: object or value that signals an error

 Throw an exception: send a signal that an error
has occurred

 Catch/Handle an exception: process the
exception; interpret the signal

4

Exceptions: syntax

 throw with argument: used to signal exception:

 try/catch statement:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

throw <expression>;

static int getObjectCount();

try
{
 /* statements */
}
catch (type param)
{
 /* statements */
}
...
catch (type param)
{
 /* statements */
}

Throw should occur during
execution of these statements

param type should match
type of thrown expression

these statements should
process the matching exception

can have multiple catch
blocks for a given try block

5

Exceptions – Semantics
 An exception is called during execution of the try block
 When an exception is thrown, control flow is

immediately altered to find a catch block.
 The computer searches the catch blocks immediately

after the containing try block for one with a parameter
matching the type of the thrown expression.

 If a matching catch block is found, it is executed.
Then flow continues after the try/catch stmt.

 If no matching catch block is found, the program
terminates.

 If try block executes with no exceptions, then the
catch blocks are skipped.

6

Exceptions: example

 Throw an exception from Time constructor

Time::Time(int hr, int min) {

 if (hr > 12 || hr < 1)
 throw "Hour value out of range";

 if (min > 59 || min < 0)
 throw "Minute value out of range";

 hour = hr;
 minute = min;
}

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

7

Exceptions: example
 Main function catches exception from Time

constructor:

 Output:

int main() {

 try {
 Time time1(13,33);
 cout << time1.display() << endl;
 }
 catch (char *msg) {
 cout << "Exception: " << msg << endl;
 }
 cout << "After the try/catch." << endl;

 return 0;
}

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Exception: Hour value out of range
After the try/catch.

8

11.9: Pointers to Structures

 Given the following Structure:

 We can define a pointer to a structure

 Now studentPtr points to the s1 structure.

struct Student {
 string name; // Student’s name
 int idNum; // Student ID number
 int creditHours; // Credit hours enrolled
 float gpa; // Current GPA
};

Student s1 = {“Jane Doe”, 12345, 15, 3.3};
Student *studentPtr;
studentPtr = &s1;

9

Pointers to Structures

 How to access a member through the pointer?

 dot operator has higher precedence than the
dereferencing operator, so:

 So this will work:

Student s1 = {“Jane Doe”, 12345, 15, 3.3};
Student *studentPtr;
studentPtr = &s1;

cout << *studentPtr.name << end; // ERROR

*studentPtr.name *(studentPtr.name) is equivalent to

cout << (*studentPtr).name << end; // WORKS

studentPtr is not a structure!

10

structure pointer operator

 Due to the “awkwardness” of the notation, C has
provided an operator for dereferencing structure
pointers:

 The structure pointer operator is the hyphen (-)
followed by the greater than (>), like an arrow.

 In summary:

studentPtr->name (*studentPtr).nameis equivalent to

sptr->name // member of a structure pointed to by sptr

s1.name // member of structure s1

11

Structure Pointer: example
 Function to input a student, using a ptr to struct

 Call:

void getStudent(Student *s) {
 cout << “Enter Student name: “;
 getline(cin,s->name);

 cout << “Enter studentID: “;
 cin >> s->idNum;

 cout << “Enter credit hours: “;
 cin >> s->creditHours;

 cout << “Enter GPA: “;
 cin >> s->gpa;
}

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Student s1;
getStudent(&s1);
cout << s1.name << endl;
...

12

Dynamically Allocting Structures

 Structures can be dynamically allocated with
new:

 Arrays of structures can also be dynamically
allocated:

Student *sptr;
sptr = new Student;

sptr->name = “Jane Doe”;
sptr->idNum = 12345;
...
delete sptr;

Student *sptr;
sptr = new Student[100];
sptr[0].name = “John Deer”;
...
delete [] sptr;

13

Structures and Pointers
 Expressions:

-

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

s->m s is a structure pointer, m is a member

*a.p a is a structure, p (a pointer) is a member. This
expr is the value pointed to by p: *(a.p)

(*s).m s is a structure pointer, m is a member.
Equivalent to s->m

*s->p s is a structure pointer, and p (a pointer) is in the
structure pointed to by s. Equiv to *(s->p).

*(*s).p s is a structure pointer, and p (a pointer) is in the
structure pointed to by s. Equiv to *(s->p).

14

in 13.3: Pointers to Objects

 We can define pointers to objects, just like
pointers to structures

 We can access public members of the object
using the structure pointer operator (->)

Time t1(12,20);
Time *timePtr;
timePtr = &t1;

timePtr->addMinute();
cout << timePtr->display() << endl;

Output:
12:21

15

Dynamically Allocting Objects

 Objects can be dynamically allocated with new:

 Arrays of objects can also be dynamically
allocated:

Time *tptr;
tptr = new Time(12,20);

...
delete tptr;

Time *tptr;
tptr = new Time[100];
tptr[0].addMinute();
...
delete [] tptr;

You can pass arguments
to a constuctor using
this syntax.

It can use only the default
constructor to initialize the
elements in the new array.

16

deleting Dynamically Allocated
Objects

 Recall that whenever an object is “destroyed”
that its destructor is called.

- Automatic/regular variables are destroyed at the
end of their scope (end of block/function where
they are defined).

- Dynamically allocated objects are destroyed
when they are “deleted”.

 If an object contains dynamically allocated
variables that are deleted in its destructor (like in
SomeClass), then they will be deleted when the
containing object is deleted.

17

deleting Dynamically Allocated
Objects

 Recall SomeClass, with dynamically allocated
value. class SomeClass

{
 private:
 int *value;
 public:
 SomeClass(int);
 ~SomeClass();
 int getVal();
 void setVal(int);
};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

SomeClass::SomeClass(int val) {
 value = new int;
 *value = val;
}

SomeClass::~SomeClass() {
 delete value;
}

18

deleting Dynamically Allocated
Objects

 driver that has a ptr to SomeClass:

#include "SomeClass.h"

int main() {

 SomeClass *scptr;
 scptr = new SomeClass(5);

 cout << scptr->getVal() << endl;

 delete scptr;

 //...

 return 0;
}

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

This calls the desctructor first, which
deletes (deallocates) scptr->value.

19

The this pointer

 this: a predefined pointer available to a class’s
member functions

 this always points to the instance (object) of
the class whose function is being called.

 When used inside a member function of the
Time class (for example), it has this hidden
declaration:

Time *this;

20

this: access hidden members

 You can use this to access members that may
be hidden by parameters with the same name
(especially in constructors/setters):

Time::Time(int hour, int minute) {

 this->hour = hour;
 this->minute = minute;

}

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

21

this: an object can return itself

 Often, an object will return itself as the result of a
binary operation, like assignment:

 because associativity of = is right to left.
 But what is the result of (v2 = x)?

 It is the left-hand operand, v2.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

v1 = v2 = x; v1 = (v2 = x);is equivalent to

v1 = v2 = x; v2 = x;
v1 = v2;

is equivalent to

22

Returning this

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

class Time {
! private:
! int hour, minute;
! public:
! const Time operator= (const Time &right);
};

const Time Time::operator= (const Time &right) {
 hour = right.hour;
 minute = right.minute;
 return *this;
}

Time time1, time2, time3(2,25);
Time time1 = time2 = time3;
cout << time1.display() << “ “
 << time2.display() << “ “
 << time3.display() << endl;

Output:
2:25 2:25 2:25

