
1

Ch. 17: Linked Lists
Part 2

CS 2308
Fall 2011

Jill Seaman

Lecture 17

Using content from textbook slides: Starting Out with C++, Gaddis, Pearson/Addison-Wesley

2

Deleting a Node from a Linked List
 deleteNode: removes node from list, and deletes

(deallocates) the removed node.
 Requires two pointers:

- one to point to the node to be deleted
- one to point to the node before the node to be

deleted.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

NULL

list
head

5 13 19

nodePtrpreviousNode

Deleting 13 from the list

3

Deleting a node
 Change the pointer of the previous node to point

to the node after the one to be deleted.

 Now just “delete” the nodePtr node

NULL

list
head

5 13 19

nodePtrpreviousNode

previousNode->next = nodePtr->next;

4

Deleting a node
 After the node is deleted:

NULL

list
head

5 19

nodePtrpreviousNode

delete nodePtr;

5

Delete Node Algorithm

 Delete the node containing num

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

If list is empty, exit
If first node is num
 make p point to first node
 make head point to second node
 delete p
else
 use p to traverse the list, until it points to num or NULL
 --as p is advancing, make n point to the node before
 if (p is not NULL)
 make n’s node point to what p’s node points to
 delete p’s node

6

Linked List functions: deleteNode

 deleteNode: removes num from list
void NumberList::deleteNode(double num) {

 // empty list, exit
 if (!head)
 return;

 ListNode *nodePtr; // to traverse the list

 // check if first node is num
 if (head->value == num) {
 nodePtr = head;
 head = nodePtr->next;
 delete nodePtr;
 }

 // else is continued on next slide

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

7

Linked List functions: deleteNode

 deleteNode: cont.
 else {
 ListNode *previousNode; // trailing node pointer

 // initialize traversal ptr to first node
 nodePtr = head;

 // skip nodes not equal to num, stop at last
 while (nodePtr && nodePtr->value != num) {
 previousNode = nodePtr; // save it!
 nodePtr = nodePtr->next; // advance it
 }

 // nodePtr not null: num is found, set links + delete
 if (nodePtr) {
 previousNode->next = nodePtr->next;
 delete nodePtr;
 }
 // else: end of list, num not found in list
 }
}

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

8

Driver to demo NumberList

 ListDriver.cpp
 // set up the list
 NumberList list;
 list.appendNode(2.5);
 list.appendNode(7.9);
 list.appendNode(12.6);
 list.displayList();

 cout << endl << "remove 7.9:" << endl;
 list.deleteNode(7.9);
 list.displayList();

 cout << endl << "remove 8.9: " << endl;
 list.deleteNode(8.9);
 list.displayList();

 cout << endl << "remove 2.5: " << endl;
 list.deleteNode(2.5);
 list.displayList();

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Output:
2.5
7.9
12.6

remove 7.9:
2.5
12.6

remove 8.9:
2.5
12.6

remove 2.5:
12.6

9

Destroying a Linked List
 The destructor must “delete” (deallocate) all

nodes used in the list
 To do this, use list traversal to visit each node
 For each node,

- save the address of the next node in a pointer
- delete the node

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

10

Linked List functions: destructor

 ~NumberList: deallocates all the remaining
nodes
NumberList::~NumberList() {

 ListNode *nodePtr; // traversal ptr
 ListNode *nextNode; // saves the next node

 nodePtr = head; //start at head of list

 while (nodePtr) {

 nextNode = nodePtr->next; // save the next
 delete nodePtr; // delete current
 nodePtr = nextNode; // advance ptr
 }

}

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

11

Inserting a Node into a Linked List
 Requires two pointers to traverse the list:

- pointer to point to the node after the insertion point
- pointer to point to node before point of insertion

 New node is inserted between the nodes pointed
at by these pointers

 The before and after pointers move in tandem as
the list is traversed to find the insertion point

- Like delete

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

12

Inserting a Node into a Linked List
 New node created, new position located:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

NULL

list
head

5 13 19

newNode

17 NULL

nodePtrpreviousNode

13

Inserting a Node into a Linked List
 Insertion completed:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

NULL

list
head

5 13 19

newNode

17

nodePtrpreviousNode

14

Insert Node Algorithm
 Insert node in a certain position

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Create the new node, store the data in it
If list is empty,
 make head point to new node, new node to null
else
 use p to traverse the list,
 until it points to node after insertion point or NULL
 --as p is advancing, make n point to the node before
 if p points to first node (n is null)
 make head point to new node
 new node to p’s node
 else
 make n’s node point to new node
 make new node point to p’s node

15

Insert Node Algorithm
 Note that in the insertNode implementation that

follows, the insertion point is immediately before
the first node in the list that has a value greater
than the value being inserted.

 This works very nicely if the list is already sorted
and you want to maintain the sort order.

 Another way to specify the insertion point is to
have insertNode take a second argument that is
the index of the node after the insertion point.

 In this case you can use a count-controlled loop
to advance the pointer(s) through the list.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

16

Linked List functions: insertNode

 insertNode: inserts num into middle of list
void NumberList::insertNode(double num) {
 ListNode *newNode; // ptr to new node
 ListNode *nodePtr; // ptr to traverse list
 ListNode *previousNode; // node previous to nodePtr

 //allocate new node
 newNode = new ListNode;
 newNode->value = num;

 // empty list, insert at front
 if (!head) {
 head = newNode;
 newNode->next = NULL;
 }

 //else is on the next slide . . .

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

17

Linked List functions: insertNode

 insertNode: inserts num into middle of list
 else {
 // initialize the two traversal ptrs
 nodePtr = head;
 previousNode = NULL;

 // skip all nodes less than num
 while (nodePtr && nodePtr->value < num) {
 previousNode = nodePtr; // save
 nodePtr = nodePtr->next; // advance
 }

 if (previousNode == NULL) { //insert before first
 head = newNode;
 newNode->next = nodePtr;
 }
 else { //insert after previousNode
 previousNode->next = newNode;
 newNode->next = nodePtr;
 }
 }
}

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

18

Driver to demo NumberList

 ListDriver.cpp

int main() {

 // set up the list
 NumberList list;
 list.appendNode(2.5);
 list.appendNode(7.9);
 list.appendNode(12.6);

 list.insertNode(10.5);

 list.displayList();

 return 0;
}

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Output:
2.5
7.9
10.5
12.6

19

Advantages of linked lists over
arrays

 A linked list can easily grow or shrink in size.
- The programmer doesn’t need to know how many

nodes will be in the list.
- Nodes are simply created in memory as they are

needed.
 When a node is inserted into or deleted from a

linked list, none of the other nodes have to be
moved.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

20

Advantages of arrays over linked
lists

 Arrays allow random access to elements:
array[i], while linked lists allow only sequential
access to elements (must traverse list to get to
i’th element).

 Another disadvantage of linked lists is the extra
storage needed for references. This makes
them impractical for lists of characters or
booleans (pointer value is bigger than data
value).

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

21

Exercise: find four errors

int main() {
 struct node {
 int data;
 node * next;
 }

 // create empty list
 node * list;

 // insert six nodes at front of list
 node *n;
 for (int i=0;i<=5;i++) {
 n = new node;
 n->data = i;
 n->next = list;
 }

 // print list
 n = list;
 while (!n) {
 cout << n->data << " ";
 n = n->next;
 }
 cout << endl;
 return 0;
}

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

