
1

Ch 8. Searching and Sorting Arrays
Part 2

CS 2308
Fall 2011

Jill Seaman

Lecture 2

2

Sorting Algorithms

! Sort: rearrange the items in an array into some
order (smallest to biggest, alphabetical order,
etc.).

! Bubble Sort
! Selection Sort
! Quicksort

3

The Bubble Sort

1.Compare first two elements. If the first is
bigger, they exchange places (swap).

2.Compare second and third elements. If
second is bigger, exchange them.

3.Repeat until last two elems of array are
compared.

4.Repeat the process until you make a complete
pass with no exchanges.

4

Example

! 7 2 3 8 9 1 7 > 2, swap
! 2 7 3 8 9 1 7 > 3, swap
! 2 3 7 8 9 1 !(7 > 8), no swap
! 2 3 7 8 9 1 !(8 > 9), no swap
! 2 3 7 8 9 1 9 > 1, swap
! 2 3 7 8 1 9 finished pass 1, did 3 swaps

5

Example cont.

! 2 3 7 8 1 9 2<3<7<8, no swap, !(8<1), swap
! 2 3 7 1 8 9 (8<9) no swap
! finished pass 2, did one swap
! 2 3 7 1 8 9 2<3<7, no swap, !(7<1), swap
! 2 3 1 7 8 9 7<8<9, no swap
! finished pass 3, did one swap

6

Example continued

! 2 3 1 7 8 9 2<3, !(3<1) swap, 3<7<8<9
! 2 1 3 7 8 9 finished pass 4, did one swap
! 2 1 3 7 8 9 !(2<1) swap, 2<3<7<8<9
! 1 2 3 7 8 9 finished pass 5, did on swap
! 1 2 3 7 8 9 1<2<3<7<8<9, no swaps
! finished pass 6, no swaps, list is sorted!

7

How does it work?

! After the nth pass, the last n+1 items of the list
are sorted.

! During the next pass (n+1), the item before the
last n+1 items will be swapped into the right
position, so that the last n+2 items are sorted.

! If the list has z elements, it will be sorted
within z passes.

8

Pseudocode
procedure bubbleSort(A : list of sortable items)

 repeat

 swapped = false

 for i = 0 to length(A)-2 inclusive!do:

 if A[i] > A[i+1] then

 swap(A[i], A[i+1])

 swapped = true

 end!if

 end!for

 until!not swapped

end!procedure

(From!wikipedia)

9

Bubble Sort in C++
void sortArray (int array[], int size) {

 bool swap;
 int temp;

 do {

 swap = false;
 for (int i = 0; i < (size-1); i++) {

 if (array [i] > array[i+1]) {

 temp = array[i];
 array[i] = array[i+1];
 array[i+1] = temp;
 swap = true;
 }
 }
 } while (swap);
}

10

Program using bubble sort
#include <iostream>
using namespace std;

void sortArray(int [], int);
void showArray(int [], int);

int main() {
 int values[6] = {7, 2, 3, 8, 9, 1};

 cout << “The unsorted values are: \n”;
 showArray (values, 6);

 sortArray (values, 6);

 cout << “The sorted values are: \n”;
 showArray(values, 6);
}

//see book for definition of showArray

11

Efficiency of Bubble Sort

! O(n2)
! We pass over the list N times.
! Each pass has N-1 comparisons
! Worst case: N*(N-1)

12

Selection Sort

! The smallest (minimum) element in the array
is exchanged with element at location 0.

! The smallest element in the array from
location 1 to the end is exchanged with the
element at location 1.

! Repeat until the end of the array.

13

Example

! 7 2 3 8 9 1 minimum: 1, swap with 7
! 1 2 3 8 9 7 minimum after 1: 2, no swap
! 1 2 3 8 9 7 minimum after 2: 3, no swap
! 1 2 3 8 9 7 min after 3: 7, swap with 8
! 1 2 3 7 9 8 min after 7: 8, swap with 9
! 1 2 3 7 8 9 done

14

Pseudocode
find index of minimum value of an array A starting at position x:
 minI = x
 for i = x+1 to length(A) – 1 inclusive do
 if (A[i] < A[mini])
 minI = i
 end if
 end for
 return minI

sort an array B:
 for j = 0 to length(B) – 2 inclusive do
 minIndex = find index of minimum value of array B
 starting at position j+1
 swap (B[j],B[minIndex]);
 end for

15

Selection Sort in C++
int findIndexOfMin (int array[], int size, int start) {
 int minIndex = start;
 for (int i = start+1; i < size; i++) {
 if (array[i] < array[minIndex]) {
 minIndex = i;
 }
 }
 return minIndex;
}

void selectionSort (int array[], int size) {
 int index;
 for (index = 0; index < (size -1); index++) {
 minIndex = findIndexOfMin(array, size, index+1);
 temp = array[minIndex];
 array[minIndex] = array[index];
 array[index] = temp;
 }
}

16

Program using Selection Sort

! See Program using Bubble Sort
" replace “sortArray” with “selectionSort”
" test and make sure the result is the same.

17

Efficiency of Selection Sort

! O(n2)
! First pass: N-1 comparisons.
! Second pass: N-2 comparisons
! etc.
! Worst case: (N-1) + (N-2) + ... + 2 + 1
! Still approximates N2, more so than it

does N log N

18

Quicksort
! A divide and conquer algorithm
! If the list is size zero or one, it is already

sorted. Otherwise:
! Pick an element, called a pivot, from the list.
! Reorder (partition) the list so that all elements

with values less than the pivot come before
the pivot, while all elements with values
greater thn (or equal to) the pivot come after it.

! Sort the sub-list of lesser elements
! Sort the sub-list of greater elements.

19

Example

! 7 2 3 8 9 1 Pick 7 as the pivot, partition:
! 2 3 1 7 8 9 Sort 2 3 1, then sort 8 9
! 2 3 1 Pick 2 as the pivot, partition:
! 1 2 3 Sort 1, then sort 3 (done)
! 8 9 Pick 8 as the pivot, partition:
! 8 9 Sort 9 (done)
! 1 2 3 7 8 9 All done

20

Efficiency of Quicksort

! O(n log n)
! Oversimplified explanation:

" Partition requires N comparisons
" Each step divides the size of the list to be

sorted in half (hopefully).

" We can only divide the list in half log
2
N times.

! O(n log n) is better than O(n2)

