
1

Ch 11. Structured Data
Part 1 (11.2 to 11.8)

CS 2308
Fall 2011

Jill Seaman

Lecture 3

2

Data Types

! Data Type:
" set of values
" set of operations over those values

! example: Integer
" whole numbers, -32768 to 32767
" +, -, *, /, %, ==, !=, <, >, <=, >=, ...

! Which operation is not valid for float?

3

Data Types (C/C++)

! Scalar (or Basic) Data Types (atomic values)
" Arithmetic types

! Integers
" short, int, long
" char

! Floating points
" float, double, long double

! Composite (or Aggregate) Types:
" Arrays: ordered sequence of values of the

same type
" Structs: named components of various types

4

Structures

! Used to represent a relationship between
values of different types

! Example: student
" ID Number
" Name
" Age
" Major
" Address

5

Structures

! Define this as a struct in C++:

! NOTE: semicolon after last brace!
! A struct is a data type, by convention the

name is capitalized.
! To define a variable of type Student:

struct Student {
 int idNumber;
 char name[25];
 int age;
 char major[25];
};

Student csStudent;

6

Structures

! Can define multiple variables of type Student:

! Each on has its own set of member variables

Student student1, student2, gradStudent;

7

Accessing Structure Members

! Use dot notation to access members of a
struct variable:

! You can use member variables just like regular
variables (of the same type).

student1.age = 18;
student2.idNumber = 123456;
cin >> gradStudent.name;

student1.age++;
myFunc(student2.idNumber);
if (student1.age==student2.age) {
 ...
}

8

Structure: operations

! Valid operations over structs:
" assignment: student1 = student2;
" function call: myFunc(gradStudent,x);

! Invalid operations over structs:
" comparison: student1 == student2
" output: cout << student1;
" input: cin >> student2;
" Must do these member by member

9

Initializing structures

! Can initialize when variable is defined:

! Must give values in order of the struct
declaration.

! Can NOT initialize members in struct
declaration:

! Why not?

Student student1 = {123456,”John Smith”,22,”Mathematics”};

struct Student {
 int id = 123456; //ILLEGAL
 char name[15] = “John Smith”; //ILLEGAL
}

10

Arrays of Structures

! You can store values of structured types in
arrays.

Student roster[40];

//input a name
cout << “Enter the first student's name: “;
cin >> roster[0].name;

//...

//output all the id numbers and names
for (int i=0; i<40; i++) {
 cout << roster[i].idNumber << endl;
 cout << roster[i].name << endl;
}

11

Nested Structures

! You can nest one structure inside another.
struct Address {
 char street[25];
 char city[15];
 char state[2];
 int zip;
};

struct Student {
 int idNumber;
 char name[25];
 Address homeAddress;
};

Student student1;

cout << student1.homeAddress.state << endl;

12

Structures as function arguments

! Structure variables may be passed as
arguments to functions.

void showStudent(Student x) {
 cout << x.idNumber << endl;
 cout << x.name << endl;
 cout << x.major << endl;
}

Student student1;

//input information about student1 here

showStudent(student1);

13

Structures as function arguments

! By default, structure variables are passed by
value.

! If the function needs to change the value of a
member, the structure variable should be
passed by reference.

void happyBirthday(Student &s) {
 s.age++;
}

14

Returning Structure from Function

! A function may return a structure.

Student inputStudent() {
 Student result;

 ifile inFile;
 inFile.open(“students.dat”);

 inFile >> result.idNumber;
 inFile >> result.name;
 inFile >> result.age;
 inFile >> result.major;
 inFile.close();

 return result;
}

Student student1 = inputStudent();

