
1

Ch 9. Pointers
Part 1

CS 2308
Fall 2011

Jill Seaman

Lecture 4

2

A Quote
A pointer is a variable that contains the address of a variable.
Pointers are much used in C, partly because they are sometimes
the only way to express a computation, and partly because they
usually lead to more compact and efficient code than can be
obtained in other ways. Pointers and arrays are closely related;
this chapter also explores this relationship and shows how to
exploit it.

Pointers have been lumped with the goto statement as a
marvelous way to create impossible-to-understand programs.
This is certainly true when they are used carelessly, and it is easy
to create pointers that point somewhere unexpected. With
discipline, however, pointers can also be used to achieve clarity
and simplicity. This is the aspect that we will try to illustrate.

From: “The C Programming Language (2nd ed.)”, Brian W. Kernighan
and Dennis M.Ritchie, Englewood Cliffs, NJ: Prentice Hall. 1988. p. 93.

3

The Address Operator
! Consider main memory to be a sequence of consecutive cells

(1 byte per cell).
! The cells are numbered. The number of a cell is its address.
! Each variable is allocated a sequence of cells, large enough

to hold a value of its data type.
! The address operator (&) returns the address of a variable.

! Addresses in C/C++ are displayed in hexadecimal. [bffffb0c = 3,221,224,204]

int x = 99;
cout << x << endl;
cout << &x << endl;

Output:
99
0xbffffb0c

4

Pointer Variables

! Pointer variables are
" variables that contain addresses
" of other variables
" of a certain, specified datatype.

! An asterisk is used to define a pointer variable

! “ptr is a pointer to an int”
! The type of the variable pointed to is used in

operations over pointers.

int *ptr;

5

Using Pointer Variables

! ptr gets the address of x:
int x = 99;
int *ptr;

ptr = &x;
cout << x << endl;
cout << ptr << endl;

Output:
99
0xbffffb0c

ptr x

bffffb0c 99

6

Dereferencing Operator: *

! The unary operator * is the indirection or
dereferencing operator.

! *ptr is an alias for the variable that ptr points
to. int x = 1;

int y = 2;
int *ip;

ip = &x; // ip points to x
y = *ip; // y gets value of var ip points to
*ip = 100; // the variable ip points to gets 100

ip x

bffffb0c 1

y

2 1100

7

Dereferencing Operator

! Another example
int x = 25, y = 50, z = 75;
int *ptr;

ptr = &x;
*ptr = *ptr + 100;

ptr = &y;
*ptr = *ptr + 100;

ptr = &z;
*ptr = *ptr + 100;

cout << x << “ “ << y << “ “ << z << endl;

8

Pointers and Arrays

! An array variable is a pointer to its first
element.

int numbers[] = {10, 20, 30, 40, 50};

cout << “first: ” << numbers[0] << endl;
cout << “first: ” << *numbers << endl;

cout << &(numbers[0]) << endl;
cout << numbers << endl;

Output:
first: 10
first: 10
0xbffffafc
0xbffffafc

9

Pointer Arithmetic

! When you add a value to a pointer, you are
actually adding that value times the size of the
data type being referenced by the pointer.
int numbers[] = {10, 20, 30, 40, 50};

// sizeof(int) is 4.
// Let us assume numbers is equal to 0xbffff400
// Then numbers+1 is really 0xbffffb00 + 4, or 0xbffffb04
// And numbers+2 is really 0xbffffb00 + 8, or 0xbffffb08
// And numbers+3 is really 0xbffffb00 + 12, or 0xbffffb0c

10

Pointer Arithmetic

! Note unary * has higher precedence than +

! Note: array[index] is equivalent to *(array + index)

int numbers[] = {10, 20, 30, 40, 50};

cout << “second: ” << numbers[1] << endl;
cout << “second: ” << *(numbers+1) << endl;

cout << "size: " << sizeof(int) << endl;
cout << numbers << endl;
cout << numbers+1 << endl;

Output:
second: 20
second: 20
size: 4
0xbffffafc
0xbffffb00

11

Pointers and Arrays

! pointer operations can be used with array
variables.

! subscript operations can be used with
pointers.

! You cannot change the value of the array
variable.

int array[10];
cin >> *(array+3);

int array[] = {1,2,3};
int *ptr = array;
cout << ptr[2];

double totals[20];
double *dptr;
dptr = totals; //ok
totals = dptr; //not ok, totals is a const

