Ch 9. Pointers

Part 2

CS 2308
Fall 2011

Jill Seaman

Lecture 5

Pointer Arithmetic

Operations on pointers over data type d:
ptr + n where n is int: ptr+n*sizeof(d)
ptr — n where n is int: ptr-n*sizeof(d)
++ and -- : ptr=ptr+1 and ptr=ptr-1
+=and -=

subtraction: ptr1 — ptr 2
result is number of values of type d between
the two pointers.



Initializing Pointers

Pointers can be initialized as they are defined.

int myValue;
int *pint = &myValue;

int ages[20];
int *pintl = ages;

int *pl = &myValue, *p2=ages, x=1;

Note: pointers to data type d can be defined
along with other variables of type d.

double x, y, *d, radius;

Comparing Pointers

pointers maybe compared using relational

operators:
< <= > >= == |I=

Examples:

int arr[25];
cout << &arr[l] > &arr[0] << endl;
cout << arr == &arr[0] << endl;

cout << arr <= &arr[20] << endl;
cout << arr > arr+5 << endl;

What is the difference?

ptrl < ptr2
*ptrl < *ptr2



Pointers as Function Parameters

Use pointers to implement pass by reference.

//prototype: void changeVal(int *);

void changevVal (int *val) {
*val = *val * 11;
}

int main() {

int x;

cout << "Enter an int " << endl;
cin >> x;

changevVal (&x);

cout << x << endl;

}

How is it different from using reference
parameters?

Pointers as array parameter

Pointer may be used as a parameter for array

double totalSales(double *arr, int size) {
double sum = 0.0;
for (int i=0; i<size; i++) {
sum += *arr++; //OR: sum += arr[i];
}
}

int main() {
double sales[4];
// input data into sales here

cout << “Total sales: “ << totalSales(sales, 4) << endl;
}
.k
What? sum += *arr++; Note: * and ++ have same
. precedence, but associate
sum = sum + *arr; r|ght to Ieft *(arr++)
arr = arr+l; not: (*arr)++



Dynamic Memory Allocation

When a function is called, memory for local
variables is automatically allocated.

When function exits, memory for local
variables automatically disappears.

Must know ahead of time the maximum
number of variables you may need.

Dynamic Memory allocation allows you to
create variables on demand, during run-time.

The new operator

“new” operator requests dynamically allocated
memory for a certain data type:

int *iptr;
iptr = new int;

new operator returns address of newly created
anonymous variable.

use dereferencing operator to access it:

*iptr = 11;
cin >> *iptr;
int value = *iptr / 3;



new with arrays

dynamically allocate arrays with new:

int *iptr; //for dynamically allocated array
int size;

cout << “Enter number of ints: “;
cin >> size;
iptr = new int[size];

for (int i=1; i<size; i++) {
iptr[i] = i;

Make sure new succeeded

new will fail if not enough memory available.
new returns NULL (which is 0) if it fails.
A pointer whose value is O is called a “Null

pointer”.
iptr = new int[10000];
if (iptr == NULL) {

cout << “Error allocating memory.” << endl;
return EXIT_ FAILURE;

}

10



delete!

When you are finished using a variable
created with new, use the delete operator to
destroy it:

int *ptr;
double *array;

ptr = new int;
array = new double[25];

éeieée ptr;

delete [] array;
Do not “delete” pointers whose values were
NOT dynamically allocated using new!

Do not forget to delete dynamically allocated
variables (Memory Leaks!!).

Returning Pointers from Functions

functions may return pointers:

char *findNull (char *str) {
char *ptr;
ptr = str;
while (*ptr != '\0')
ptr++;
return ptr;

}

The returned pointer must point to

dynamically allocated memory OR
an item passed in via an argument

12



Returning Pointers from Functions:

duplicateArray

int *duplicateArray (int *arr, int size)
{

int *newArray;

if (size <= 0) //size must be positive
return NULL;

newArray = new int [size]; //allocate new array

for (int index = 0; index < size; index++)
newArray[index] = arr[index]; //copy to new array

return newArray;

int a [5] = {11, 22, 33, 44, 55};
int *b = duplicateArray(a, 5);
for (int i=0; i<5; i++)
if (a[i] == b[i])
cout << i << “ ok” << endl;
delete [] b;

Problems returning pointers

Bad: char *getName() {

char name[81];

cout << “Enter your name: “;
cin.getline(name, 81);
return name;

what happens to name on function exit?

GOOd char *getName () ({

char *name;

name = new char[81];

cout << “Enter your name: “;
cin.getline(name, 81);
return name;

13

14



Memory Leak!

int *appendArray (int x, int *arr, int size)

{
int *newArray;
newArray = new int [size+l]; //allocate new array
for (int index = 0; index < size; index++)

newArray[index] = arr[index]; //copy to new array

newArray[size] = X; //add x to last spot
return newArray;

}

// in main:

int *myList;

int size = 1;

myList = new int [1];
myList[0] = 11;

// inside menu case for add

int z;

cout << “Enter int for z: “;

cin >> z;

myList = appendArray(z, myList, size); //MEMORY LEAK HERE!

Memory Leak

// inside case for add choice

int z;

cout << “Enter int for z: “;

cin >> z;

myList = appendArray(z, myList, size); //MEMORY LEAK HERE!

myList

X » 11 .« still allocated, cannot be released

11 22

v

Called “Pointer Reassignment

15

16



Memory Leak: solved

// inside case for add choice
{ int z;

cout << “Enter int for z: “;
cin >> z;

int *newList; //temp variable, local to the case block
newList = appendArray(z, myList, size);

delete [] myList;

myList = newList;

myList

This was deleted/released

1 ‘ before re-assigning the pointer.

newList

11 22

Y

newList disappears when the case
block is exited 17



