
1

Ch 9. Pointers
Part 2

CS 2308
Fall 2011

Jill Seaman

Lecture 5

2

Pointer Arithmetic

! Operations on pointers over data type d:
" ptr + n where n is int: ptr+n*sizeof(d)
" ptr – n where n is int: ptr-n*sizeof(d)
" ++ and -- : ptr=ptr+1 and ptr=ptr-1
" += and -=
" subtraction: ptr1 – ptr 2

result is number of values of type d between
the two pointers.

3

Initializing Pointers

! Pointers can be initialized as they are defined.

! Note: pointers to data type d can be defined
along with other variables of type d.

int myValue;
int *pint = &myValue;

int ages[20];
int *pint1 = ages;

int *p1 = &myValue, *p2=ages, x=1;

double x, y, *d, radius;

4

Comparing Pointers

! pointers maybe compared using relational
operators:

< <= > >= == !=
! Examples:

! What is the difference?
" ptr1 < ptr2
" *ptr1 < *ptr2

int arr[25];

cout << &arr[1] > &arr[0] << endl;
cout << arr == &arr[0] << endl;
cout << arr <= &arr[20] << endl;
cout << arr > arr+5 << endl;

5

Pointers as Function Parameters

! Use pointers to implement pass by reference.

! How is it different from using reference
parameters?

//prototype: void changeVal(int *);

void changeVal (int *val) {
 *val = *val * 11;
}

int main() {

 int x;
 cout << "Enter an int " << endl;
 cin >> x;
 changeVal(&x);
 cout << x << endl;
}

6

Pointers as array parameter

! Pointer may be used as a parameter for array

! What?

double totalSales(double *arr, int size) {
 double sum = 0.0;
 for (int i=0; i<size; i++) {
 sum += *arr++; //OR: sum += arr[i];
 }
}

int main() {
 double sales[4];
 // input data into sales here
 cout << “Total sales: “ << totalSales(sales, 4) << endl;
}

sum += *arr++;

 sum = sum + *arr;
 arr = arr+1;

Note: * and ++ have same
precedence, but associate
right to left: *(arr++)
not: (*arr)++

7

Dynamic Memory Allocation

! When a function is called, memory for local
variables is automatically allocated.

! When function exits, memory for local
variables automatically disappears.

! Must know ahead of time the maximum
number of variables you may need.

! Dynamic Memory allocation allows you to
create variables on demand, during run-time.

8

The new operator

! “new” operator requests dynamically allocated
memory for a certain data type:

! new operator returns address of newly created
anonymous variable.

! use dereferencing operator to access it:

int *iptr;
iptr = new int;

*iptr = 11;
cin >> *iptr;
int value = *iptr / 3;

9

new with arrays

! dynamically allocate arrays with new:
int *iptr; //for dynamically allocated array
int size;

cout << “Enter number of ints: “;
cin >> size;
iptr = new int[size];

for (int i=1; i<size; i++) {
 iptr[i] = i;
}

10

Make sure new succeeded

! new will fail if not enough memory available.
! new returns NULL (which is 0) if it fails.
! A pointer whose value is 0 is called a “Null

pointer”.
iptr = new int[10000];
if (iptr == NULL) {
 cout << “Error allocating memory.” << endl;
 return EXIT_FAILURE;
}

11

delete!

! When you are finished using a variable
created with new, use the delete operator to
destroy it:

! Do not “delete” pointers whose values were
NOT dynamically allocated using new!

! Do not forget to delete dynamically allocated
variables (Memory Leaks!!).

int *ptr;
double *array;

ptr = new int;
array = new double[25];
. . .
delete ptr;
delete [] array;

12

Returning Pointers from Functions

! functions may return pointers:

! The returned pointer must point to
" dynamically allocated memory OR
" an item passed in via an argument

char *findNull (char *str) {
 char *ptr;
 ptr = str;
 while (*ptr != '\0')
 ptr++;
 return ptr;
}

13

Returning Pointers from Functions:
duplicateArray

int *duplicateArray (int *arr, int size)
{
 int *newArray;

 if (size <= 0) //size must be positive
 return NULL;

 newArray = new int [size]; //allocate new array

 for (int index = 0; index < size; index++)
 newArray[index] = arr[index]; //copy to new array

 return newArray;
}

int a [5] = {11, 22, 33, 44, 55};
int *b = duplicateArray(a, 5);
for (int i=0; i<5; i++)
 if (a[i] == b[i])
 cout << i << “ ok” << endl;
delete [] b;

14

Problems returning pointers

! Bad:

" what happens to name on function exit?

! Good:

char *getName() {
 char name[81];
 cout << “Enter your name: “;
 cin.getline(name, 81);
 return name;
}

char *getName () {
 char *name;
 name = new char[81];
 cout << “Enter your name: “;
 cin.getline(name, 81);
 return name;
}

15

Memory Leak!
int *appendArray (int x, int *arr, int size)
{
 int *newArray;
 newArray = new int [size+1]; //allocate new array

 for (int index = 0; index < size; index++)
 newArray[index] = arr[index]; //copy to new array

 newArray[size] = x; //add x to last spot

 return newArray;
}

// in main:
int *myList;
int size = 1;
myList = new int [1];
myList[0] = 11;

// inside menu case for add
int z;
cout << “Enter int for z: “;
cin >> z;
myList = appendArray(z, myList, size); //MEMORY LEAK HERE!

16

Memory Leak

// inside case for add choice
int z;
cout << “Enter int for z: “;
cin >> z;
myList = appendArray(z, myList, size); //MEMORY LEAK HERE!

myList
11

11 22

X still allocated, cannot be released

! Called “Pointer Reassignment

17

Memory Leak: solved
// inside case for add choice
{ int z;
 cout << “Enter int for z: “;
 cin >> z;

 int *newList; //temp variable, local to the case block
 newList = appendArray(z, myList, size);
 delete [] myList;
 myList = newList;
}

myList
11

11 22
newList

This was deleted/released
before re-assigning the pointer.

newList disappears when the case
block is exited

