
1

C++ Programming on Linux
Part 2

CS 2308
Fall 2011

Jill Seaman

Lecture 7

2

Programs with Multiple Files
! Why split code into multiple files?

! Separate compilation of files: can speed up
compilation when only 1 file is changed.

! Better organization, easier to find things

! Facilitates code reuse and sharing

! Allows multiple programmers to work on the
same program.

3

How to Split C++ Code
! Often put main in its own file

setup and call other functions, like a driver
! Put functions that interact with each other in their

own file (a sub-system).
! Put functions that are used by many other files/

functions in their own file (utilities: sort, search)
! Note: if a function is called from another file, its

prototype must occur in that file, before the
function is called.

4

Header Files
! Problem: prototype for a given function occurs in

multiple files, if it is used often.
" Difficult to maintain if prototype changes

• Convention:
" put the prototypes of the functions from a given

file in another file, called a header file.
" ex: sprite.cpp and sprite.h
" #include the header file in every other file that

calls one of these functions.
" header files also contain other common

definitions: structures, constants, etc.

5

Header Files as Interface
! Header file also acts as an interface between the

users of the functions and their implementation.
! This hides the details from the users.
• Also isolates the users of the functions from

changes in implementation of the functions.
• Good Practice: comment the function prototypes

in the header file with information about how to
use the function, independently of how it is
implemented.

6

Simple Example

! filehello.h

! filehello.cpp

// header file for filehello

#include<fstream>
#include<iomanip>

void filehello();

//hello world from file
//coded by Carol Hazlewood
//September 9, 2009

#include "filehello.h"

using namespace std;

void filehello()
{
 ofstream outFile;
 outFile.open("hello.txt");
 outFile << "hello, world." ;
 outFile.close();
}

7

Simple Example

! multhello.cpp
// Hello World example 2. Shows multiple file organization,
// use of header files, and sample makefile.

//hello world
//coded by Carol Hazlewood
//September 9, 2008

#include<iostream>
#include "filehello.h"

using namespace std;

int main()
{

 filehello();

 cout << "Hello, World!" << endl;

 return 0;
}

8

How to compile a multiple file
program

! From the command line (either order):

" The header file does not need to be listed.
 It only needs to be #included.

• a.out is the executable for the entire program.

[...]$g++ filehello.cpp multhello.cpp

[...]$./a.out
Hello, World!

9

Separate Compilation

! Compiling to intermediate files:

" -c option produces object files, with a .o extension
(filehello.o)

• To link the object files into the executable (a.out):

• Now if we change only filehello.cpp, to
recompile:

[...]$g++ -c filehello.cpp
[...]$g++ -c multhello.cpp

[...]$ g++ multhello.o filehello.o

[...]$g++ -c filehello.cpp
[...]$g++ multhello.o filehello.o

10

Make

! Make is a utility that manages compilation of
large groups of source files.

! After the first time a project is compiled, it only
re-compiles the changed files (and the files
depending on the changed files).

! The dependencies are defined by rules
contained in a makefile.

! The rules are defined and managed by humans
(programmers).

11

Make

! Rule format:

! target is a filename, or an action/goal name
! make with no arguments executes first rule in

makefile.
! make followed by a target executes the rule for

that target.
! An example rule:

target: [prerequisite files]
<tab> [command to execute]

multhello.o: multhello.cpp filehello.h
! g++ -c multhello.cpp

12

Simple Example

! makefile
#makefile for hello world with multiple files

multhello: multhello.o filehello.o
! g++ multhello.o filehello.o -o multhello

multhello.o: multhello.cpp filehello.h
! g++ -c multhello.cpp

filehello.o: filehello.cpp filehello.h
! g++ -c filehello.cpp

clean:
! rm *.o
! rm multhello

