
System Modeling

Chapter 5
part B

1

System Modeling
in the textbook

• Context models

• Interaction models

• Structural models

• Behavioral models

• Model-driven engineering 

2

5.3 Structural Models

• Display the organization of a system in terms of 
its components and relationships 

• Static Models
- shows structure of system design

• Dynamic Models
- shows organization of system when it is executing 

(processes/threads)
- (won’t be discussing these)

3

5.3.2 UML Class Diagrams

• Static model

• Shows classes and associations between them

• Uses:
- developing requirements: model real-world objects 
- during design phase: add implementation objects 

• Simple class diagrams:
- Box represents a class (with a name)
- Lines show associated between classes
- Number at each end to show how many objects can be 

involved in the association

4



5

Two classes and one association
 (a one-to-one relationship)

Fig 5.8: UML Classes and association

Patient Patient
record

1 1

UML Class Diagrams
• An object is an instance of a class

• Associations can be named

• Now resembles a Semantic data model: 
- used in database design
- ex: an ER diagram (entity-relationship)

• But you cannot have attributes of relationships
- unless you make the relationship into a class

6

7

Fig 5.9: Classes and associations in the 
MHC-PMS 

Note: 1..* indicates “one or more”

Patient General
practitioner

Consultation

Consultant

Medication

Treatment

Hospital
Doctor

Condition
referred-by

referred-to

diagnosed-
with

attends

prescribes

prescribesruns

1..*

1

1..* 11..*

1..*

1..*

1..*

1..4

1..*

1..*
1..*

1..*

8

Fig 5.10: Consultation class, in more detail 

Consultation

Doctors
Date
Time
Clinic
Reason
Medication prescribed
Treatment prescribed
Voice notes
Transcript
...

New ( )
Prescribe ( )
RecordNotes ( )
Transcribe ( )
...

Attributes, 
types optional

Operations, param + 
return types optional

Note: Don’t record 
associated classes here



5.3.2 Generalization
• Act of identifying commonality among concepts, 

defining: 
- a general concept (superclass) 
- specialized concept(s) (subclasses). 

• Example: University personnel
- Faculty, Staff, Students (graduate, undergrad)
- All university personnel have ID numbers
- All students have majors

• Common attributes are stored in superclass only
- change affecting ID number happens in University 

personnel class only

9 10

Fig 5.11: Generalization hierarchy

Arrow points to superclass

Doctor

General
practitioner

Hospital
doctor

Consultant Team doctor

Trainee
doctor

Qualified
doctor

11

Fig 5.12: Generalization with added detail

Attributes + operations of
superclass also belong to 

subclass objects

Doctor

General practitionerHospital doctor

Name
Phone #
Email

register ( )
de-register ( )

Staff #
Pager #

Practice
Address

Subclass adds more specific 
attributes + operations

5.3.3 Aggregation
• When objects are composed of separate parts 

- ex: a (university) class is composed of a faculty member 
and several students 

• UML: aggregation is a special kind of association
- diamond at end of line closest to “whole” class

• When implemented, the composite usually has 
instance variables for each “part” object

12



13

Fig 5.13: Aggregation association

Patient record

Patient Consultation

11

1 1..*

5.4 Behavioral models

• Represent dynamic behavior of the system as it is 
executing, 

• More of an “internal” view of the system

• Sequences of Actions:
- UML Activity diagrams (process, flow of actions)
- UML Sequence diagrams (sequence of interactions)
- Data-flow diagrams  (DFD)

• States of an object or system, with transitions
- UML state diagrams

14

5.4.1 Data-flow diagram

• illustrate how data is processed by a system in 
terms of inputs and outputs.

• Among the first graphical software models 
(not UML)

• Models sequence of actions in a process 
- sequence of functions, each with input and output data  
- functional or procedural -oriented (not objects)

• Useful during requirements analysis: 
- simple and intuitive, users can validate proposed system

15

Example Data Flow Diagram: 
Order Processing

16

Oval: functional processing
Rectangle: data store
Labeled arrow: data and movement



5.4.2 UML State diagrams
• Describes 

- all the states an (object or component or system) can get into
- how state changes in response to events (transitions)

• Useful when object/component/system is changed by 
events (real time and embedded systems, etc.)

• Components of a state diagram
- Rounded rectangles: system states
‣ includes what action to do in that state

- Labelled arrow: stimuli to force transition between states
‣ optional guard: transition allowed only when guard is true
‣ unlabeled arrow: transition occurs automatically when 

action is complete

17

Fig 5.16
State diagram of a microwave oven

18

Diagram is missing (at least) one arrow

Full power

Enabled

do: operate
oven

Full
power

Half
power

Half
power

Full
power

Number

Door
open

Door
closed

Door
closed

Door
open

Start

do: set power
= 600

Half power
do: set power

= 300

Set time

do: get number
exit: set time

Disabled

Operation

Cancel

Waiting

do: display
time

Waiting

do: display
time

do: display
     'Ready'

do: display
'Waiting'

Timer

Timer

5.5 Model Driven Engineering (MDE)

• An approach to software development where 
models (rather than programs) are the principal 
outputs of the development process. 

- Developers generate programs automatically from the models.
- Developers test and debug models rather than programs  

• Models are often extensions of UML models

• Some problems:
- Models are inherently too abstract to be a basis for the 

implementation.
- Not enough good tools supporting model compilation and 

debugging yet.

19


