
Design and
Implementation

Chapter 7

1

Design and Implementation
in the textbook

• Introduction

• 7.1 Object-oriented design using the UML

• 7.2 Design patterns

• 7.3 Implementation issues

• 7.4 Open source development

2

Design and Implementation

• Software design and implementation is the stage
in the software engineering process at which an
executable software system is developed.

• Software design and implementation activities
are interleaved.

• Design should be related to the implementation
environment
- Don’t use UML (object-oriented design) to

write code in C.

3

Design and Implementation

• Software design:
- Creative activity
- Identify software components and their relationships
- Based on requirements.

• Implementation is the process of realizing the
design as a program.

• Design may be
- Documented in UML (or other) models
- Informal sketches (whiteboard, paper)
- In the programmer’s head.

4

Purpose of the chapter

• It is NOT about programming topics
- Assume you all have design and implementation

experience.

• To show how system modeling (ch 5) and
architectural design (ch 6) are practiced in object
oriented design

• To introduce implementation issues not usually
covered in programming books
- Software reuse
- configuration management
- open source development

5

7.1 Object-oriented design
using UML

• Object-oriented system made up of interacting
objects
- Maintain their own local state (private).
- Provide operations over that state.

• Object-oriented design process:
- Design classes (for objects) and their interactions.

• Why object oriented?
- Data is encapsulated: can change representation

without changing code external to class.
- can add services without affecting other classes.
- clear mapping between classes and real world objects.

6

Object-oriented design
activities

• Main activities:
- Understand and define context and external interactions

with the system
- Design system architecture
- Identify the principal objects in the system
- Develop design models.
- Specify interfaces

• Get ideas, propose solutions, refine, trial and
error, backtrack, explore options, defer details...

• Illustrate process by designing wilderness
weather station.

7

7.1.1 System context and interactions

• First: understand the relationship between the
software being developed and its external
environment.
- sets boundaries: know what to implement
- decide how to structure system so it can communicate

with its environment

• System models to use here:
- Context model: Boxes and lines (+ cardinality),

--shows all systems involved
- Interaction models: Use cases (or UML activity diagram)

--shows how the systems interact

8

System context for weather station

9

one Weather information system,
one Control system,
one Satellite,
many Weather stations.

Weather
information

system
1..n1 Weather

station

Satellite

1

1

1..n

1

Control
system 11

1 1..n

We are designing the Weather station system.

Weather
Station

Weather station use cases

10

How the Weather information
system and the Control system
interact with the Weather stations.
(what their goals are).

Each use case should be described
using structured natural language

Shutdown

Report
weather

Restart

Report status

Reconfigure

Weather
information

system

Control
system Powersave

Remote
control

Use case description for
“Report weather”

11

System Weather station

Use case Report weather

Actors Weather information system, Weather station

Description The weather station sends a summary of the weather data that has been
collected from the instruments in the collection period to the weather
information system. The data sent are
the maximum, minimum, and average ground and air temperatures;
the maximum, minimum, and average air pressures;
the maximum, minimum, and average wind speeds;
the total rainfall;
and the wind direction as sampled at five-minute intervals.

Stimulus The weather information system establishes a satellite communication link
with the weather station and requests transmission of the data.

Response The summarized data is sent to the weather information system.

Comments Weather stations are usually asked to report once per hour but this
frequency may differ from one station to another and may be modified in
the future.

7.1.2 Architectural Design

• Start answering questions from Section 6.1 (use
context and interactions to help answer them)
- is there a generic application architecture?
- is there an architectural pattern that might be used?
- What will be the fundamental approach used to structure

the system?
- What strategy will be used to control the operation of the

components in the system?
- What about the non-functional requirements?
- etc.

• Identify major components of the system and
their interactions.

12

High level architecture of
the weather station

13

Each subsystem listens for
messages over the link and picks
up messages intended for them.

New architectural pattern: (Message bus ?)
Subsystems communicate by broadcasting
messages on the communication link

«subsystem»
Data collection

«subsystem»
Communications

«subsystem»
Configuration manager

«subsystem»
Fault manager

«subsystem»
Power manager

«subsystem»
Instruments

Communication link

Architecture of data collection system

14

WeatherData object encapsulates
the information collected from the
instruments.

Transmitter and Receiver manage
communications.

Data collection

Transmitter Receiver

WeatherData

7.1.3 Object class identification

• Analyze descriptions of system (use cases, etc.):
- nouns become objects and attributes
- verbs become operations or services

• For the weather station, based on “report
weather” use case:
- objects representing the instruments that collect data
- object representing the summary of weather data
- high level object to encapsulate system interactions(s)

• Process is iterative and creative and cooperative
- find objects, see how they should interact, this leads to

realizing what other objects might be needed.

15

Weather station object classes

16

Application domain objects
that are ‘hardware’ objects
related to the instruments
in the system.

The basic interface of the
weather station to its
environment. Interactions
from the use-case model.

identifier

reportWeather ()
reportStatus ()
powerSave (instruments)
remoteControl (commands)
reconfigure (commands)
restart (instruments)
shutdown (instruments)

WeatherStation

get ()
test ()

Ground
thermometer

temperature

Anemometer

windSpeed
windDirection

get ()
test ()

Barometer

pressure
height

get ()
test ()

WeatherData

airTemperatures
groundTemperatures
windSpeeds
windDirections
pressures
rainfall

collect ()
summarize ()

gt_Ident
an_Ident bar_Ident

Encapsulates the summarized
data from the instruments.

Object class identification

• Focus on the objects, not the implementation

• Then refine the model
- Look for common features and design the inheritance

hierarchy (generalization)
- Ex: Instrument superclass, with identifier, get(), test()

• The model should still be abstract, not
“complete”

17

7.1.4 Design models
(system models used for design)

• Design models show
- the objects and object classes and
- relationships and interactions between these entities.

• How much detail?
- not much required if all system stakeholders are in close

communication
- much detail required when development is done by

various teams, not in close contact with stakeholders.

• Which design models are needed?
- depends on type of system, designer+implementor

experience, development platform, software process, etc.

18

Design models: 2 types

• Structural models describe the static structure of
the system in terms of object classes and
relationships.
- Class diagrams
- Relationships: generalization, aggregation, uses/used-by

• Dynamic models describe the dynamic
interactions between objects.
- Sequence Diagrams (one per use case)
- State Diagrams

19

Sequence diagram describing data
collection (report weather)

20

Objects across top, interactions
are arrows, performed in
sequence, top to bottom.

does not wait for reply

:SatComms

request (report)

acknowledge
reportWeather ()

get (summary)

reply (report)

acknowledge

:WeatherStation :Commslink

summarize ()

:WeatherData

acknowledge

send (report)

acknowledge

Weather
information system

waits for reply
return from message (not new)

Weather station state diagram

21

Only use state diagram if it is
needed to clarify behavior

clock: stimulates instruments to
take regular readings
other events are from use cases

transmission done

remoteControl()

reportStatus()restart()

shutdown()

test complete

weather summary
complete

clock collection
done

Operation

reportWeather()

Shutdown Running Testing

Transmitting

Collecting
Summarizing

Controlled

Configuring

reconfigure()

configuration done

powerSave()

7.1.5 Interface specifications

• General concept of interface
- a point where two systems, subjects, organizations, etc.,

meet and interact.

• Software interface
- the way one software component may interact with

another
- specific methods (functions) that may be called to access

a software component
- includes the signature of each function/method: names of

method, types of each parameter.
- can specify this using a class definition with no attributes,

just methods

22

Interface specifications

• Why specify interfaces to components?
- so components may be developed in parallel
- one team develops component with the given interface.
- another team develops component that accesses that

component according to the interface.

• Interface is like a contract between components.

• Helps promote separation/independence.
- can make changes behind the interface without affecting

components using that interface.

23

7.2 Design patterns

• An design pattern is a general, reusable solution to
a commonly occurring problem within a given
context in software design.

• These solutions have been successful in previous
projects (in various contexts).

• Patterns are a means of representing, sharing and
reusing knowledge and experience.

• Pattern descriptions should include information
about when they are and are not useful.

• Designer can browse pattern descriptions to identify
potential candidates (see Design Patterns book).

24

Design patterns: essential elements

• Name
- A meaningful pattern identifier.

• Problem description
- Explains the problem and its context.
- Describes when the pattern (solution) may be applied.

• Solution description
- A template for a design solution that can be instantiated in

different ways. (Abstract, not concrete).

• Consequences
- The results and trade-offs of applying the pattern.

25

The observer pattern

26

Pattern name Observer

Description Defines a one-to-many dependency between objects so that when one object (the
subject) changes state, all its dependents (the observers) are notified and updated
automatically.

Problem
description

In many situations, you need to maintain consistency between related objects. For
example, using a GUI, you often have to provide multiple displays of state
information, such as a graphical display and a tabular display. When the state is
changed, all displays must be updated.
 This pattern may be used whenever it is not necessary for the object that maintains
the state information to know about the objects that use the state information.

Solution
description

This involves two main objects, Subject and Observer. The state is maintained in
Subject, which has operations allowing it to add and remove Observers (the displays)
and to issue a notification to the observers when the state has changed.
 The Observer maintains a (partial) copy of the state of Subject and implements the
Update() method that is called by the Subject during notification of state changes.
The Update() method asks the Subject for the updated state values that it needs.

Consequences The Observer pattern lets you vary subjects and observers independently. You can
reuse subjects without reusing their observers, and vice versa. It lets you add and
remove observers without modifying the subject or other observers.
Since Update() provides no details on what part of the state changed, the observers
may be forced to work hard to deduce the changes.

An instance of the observer pattern

27

A: 40
B: 25
C: 15
D: 20

Observer 1

A

B

C

D

Observer 2

Subject

0

50

25

A B C D

A UML model of the Observer pattern

28

Subject Observer

Attach (Observer)
Detach (Observer)
Notify ()

Update ()

ConcreteSubject

GetState ()

subjectState

ConcreteObserver

Update ()

observerState

observerState =
 subject -> GetState ()return subjectState

for all o in observers
 o -> Update ()

Subject and Observer are
abstract superclasses:
they cannot have instances.

Other Design Patterns

• Adapter: Convert the interface of a class into
another interface clients expect.

• Façade: Provide a unified interface to a set of
interfaces in a subsystem.

• Iterator: Provide a standard way of accessing the
elements in a collection, irrespective of how that
collection is implemented.

• Abstract Factory: Provide an interface for creating
families of related or dependent objects without
specifying their concrete classes
- creating nodes of abstract syntax tree for different

languages.
29

7.3 Implementation issues

• Aspects of implementation that are important to
software engineering but not covered in
programming textbooks

- Reuse: developing software by reusing existing designs,
components or systems

- Configuration management: managing the different
versions of each software component (the source code).

- Host-target development: when the development (host)
environment is on a different system from the production
(target) environment.

30

7.3.1 Reuse: reuse levels

• The abstraction level
- Don’t reuse software directly but use knowledge of

successful abstractions: Design/Architectural patterns.

• The object level
- Directly reuse objects from a library rather than writing the

code yourself.

• The component level
- Components are collections of objects and classes that

operate together to provide related functions (frameworks).

• The system level
- Reusing entire application systems, requires configuration.

31

Reuse benefits+costs

• Benefits
- Development should be quicker and cost less
- Reused software should be reliable (well-tested).

• Costs
- Time spent searching for and assessing candidates.
- Expense of buying the reusable software.
- Time spent adapting and configuring reusable software to

fit your requirements
- Time spent integrating various reusable components with

each other and with new code.

• Always consider reusing existing knowledge and
software when starting a new development project.

32

7.3.2 Configuration management

• Potential problems of team development
- Interference: Changes made by one programmer could

overwrite a change previously made by another.
- Redo good work: Programmers accessing out-of-date

versions could re-implement work already done.
- Can’t undo bad work: Figuring out how to undo problems

introduced into a previously functioning system.

• Configuration management: Process of managing a
changing software system, so all developers can
- access code and documentation in a controlled way
- find out what changes have been made
- compile and link components to create the system.

33

Fundamental configuration
management activities

• Version management
- track different versions
- coordinate work of multiple developers.

• System integration
- define which versions of each component are used for a

given version of the overall system.
- then builds system automatically

• Problem tracking
- allows users to report and track bugs.
- allows developers to track progress on fixing bugs.

34

Configuration management tools

• Integrated tools: all three components in one
- same interface, can link components together
- ClearCase

• Version management
- CMVC, CVS, subversion, git, mercurial.

• System integration (build tools)
- make (unix), Apache Ant, or built into IDE

• Problem tracking
- bugzilla
- any database

35

7.3.3 Host-target development

• Host: computer on which software is developed

• Target: computer/system on which software runs

• Development platforms and execution platforms
- hardware AND software (operating systems, databases,

IDEs, configuration management, etc.)

• If the two platforms are not the same
- deploy developed software to target for testing
- test using a simulator on development machine

• If the two platforms ARE the same
- developed software may still require supporting software

not on development platform

36

Development platform tools

• Compiler(s)

• (Syntax-directed) editing system.

• Debugging system.

• Graphical editing tools: tools to edit UML models.

• Testing tools: Junit which can automatically run a set
of unit tests on a new version of a program.

• Project support tools that help you organize the code
for different development projects.

• Configuration management tools

37

7.4 Open source development

• The source code of the system is publicly available

• Volunteers are invited to participate in the
development process (may be users).

• Some open source projects:
- Linux, Apache web server, Java
- Eclipse, FireFox, Thunderbird, Open Office

• Issues:
- Should an open source approach be used for the

software’s development?
- Should the system being developed (re)use open source

software components?

38

Open source development

• How to make money developing open source
products?
- Development is cheaper: volunteer labor.
- The company can sell support services
- Software must have wide appeal

• Re-using open source software in software products:
- These components are generally free.
- These components are generally well-tested.
- There may be licensing issues. . .

39

Open source licenses

• GNU General Public License (GPL).
- reciprocal
- if you re-use this open source software in your software then

you must make your software open source.

• GNU Lesser General Public License (LGPL)
- you can write components that link to open source code

without having to publish the source of these components.

• Berkley Standard Distribution (BSD) License.
- non-reciprocal
- not obliged to re-publish any changes or modifications made

to open source code.
- you may include the code in proprietary systems that are sold.

40

