
Software Testing

Chapter 8

1

Software Testing
in the textbook

• Introduction (Verification and Validation)

• 8.1 Development testing

• 8.2 Test-driven development

• 8.3 Release testing

• 8.4 User testing

2

Verification and Validation

• Verification:
- The software should conform to its specification

(functional and non-functional requirements).

 "Are we building the product right”.

• Validation:
- The software should do what the customer really

requires.

 "Are we building the right product”.

3

Requirements don’t always reflect real wishes and needs
of customers and users

Verification and Validation: Goals

• Establish confidence that the software is fit for
purpose.

• NOT that it’s completely free of defects.
- generally not an achievable goal

• Good enough for its intended use
- the type of use will determine the degree of confidence

that is needed

4

Verification and Validation:
confidence level

• Software purpose
- how critical is the software to an organization?

• User expectations
- Users may have low expectations of certain kinds of

software.

• Marketing environment
- Getting a product to market early may be more

important than finding all the defects in the program.

5

Required confidence level depends on:

Verification Techniques

• Software inspections (static verification)
- Analyze static system representation to discover

problems
- Specifications, design models, source code, test plans

• Software testing (dynamic verification)
- The system is executed with simulated test data
- Check results for errors, anomalies, data regarding non-

functional requirements.

6

Verification Techniques

7

UML design
models

Software
architecture

Requirements
specification

Database
schemas Program

System
prototype Testing

Inspections

V&V at different stages in the software process

Software Testing Goals

• Demonstrate that the software meets its
requirements.
- Validation testing
- Collect test cases that show that the system operates as

intended.

• Discover situations in which the behavior of the
software is incorrect or undesirable.
- Defect testing
- Create test cases that make the system perform

incorrectly.
- Then fix the defect: Debugging

8

Software Testing

9

Validation testing (white only) versus Defect testing (blue)

Ie
Input test data

Oe
Output test results

System

Inputs causing
anomalous
behaviour

Outputs which reveal
the presence of
defects

Software testing process

10

Test Case specifies:
• what to test
• input data
• expected output

Design test
cases

Prepare test
data

Run program
with test data

Compare results
to test cases

Test
cases

Test
data

Test
results

Test
reports

Can be automated

Three stages of software testing

• 8.1 Development testing:
- the system is tested during development to discover

bugs and defects.

• 8.3 Release testing:
- a separate testing team tests a complete version of the

system before it is released to users.

• 8.4 User testing:
- users or potential users of a system test the system in

their own environment.

11

8.1 Development testing

• All testing activities carried out by the team
developing the system. (defect testing)
- Unit testing: individual program units or object classes

are tested.
--should focus on testing the functionality of objects.

- Component testing: several individual units are
integrated to create composite components.
--should focus on testing component interfaces.

- System testing: some or all of the components in a
system are integrated and the system is tested as a
whole.
--should focus on testing component interactions.

12

8.1.1 Unit testing

• Unit testing is the process of testing individual
components in isolation.
- functions vs classes

• Complete test coverage of a class:
- Testing all operations associated with an object
- Setting and interrogating all object attributes
- Exercising the object in all possible states

• Inheritance makes it more difficult to design
object class tests
- The information to be tested is not localized.
- Must test common info in each subclass.

13

Writing test cases for WeatherStation

14

1. Write a test case to check if
identifier is set properly during normal
system startup

2. Write test cases for each of the
methods (reportWeather(), etc.)
Try to test in isolation, but for example
you cannot test shutdown unless you
have already executed restart.

identifier

reportWeather ()
reportStatus ()
powerSave (instruments)
remoteControl (commands)
reconfigure (commands)
restart (instruments)
shutdown (instruments)

WeatherStation

Testing the states

• Use the state model:
- Identify sequences of state transitions to be tested
- Write a test case that generates the event sequences to

cause these transitions.
- Verify that the program ends up in the proper state.

• For example:
- Shutdown -> Running-> Shutdown
- Configuring-> Running-> Testing -> Transmitting ->

Running
- Running-> Collecting-> Running-> Summarizing ->

Transmitting -> Running

15

Testing States

16

Shutdown -> Running-> Shutdown is tested with a
call to restart() followed by a call to shutdown(),
then check the state

transmission done

remoteControl()

reportStatus()restart()

shutdown()

test complete

weather summary
complete

clock collection
done

Operation

reportWeather()

Shutdown Running Testing

Transmitting

Collecting
Summarizing

Controlled

Configuring

reconfigure()

configuration done

powerSave()

Automated testing

• Unit testing should be automated so that tests
are run and checked without manual
intervention.
- JUnit or something like it
- Your test classes extend the JUnit test class:
- Initialize the test case with the inputs and expected

outputs.
- Call the method to be tested.
- Make the assertion: compare the result of the call with

the expected result.
- When executed, if the assertion evaluates to true, the

test has been successful if false, then it has failed.

17

Sample JUnit style test case
(from ch. 3)

18

public class MoneyTest extends TestCase {

 public void testSimpleAdd() {
 Money m1 = new Money(12,”usd”);
 Money m2 = new Money (14, “usd”);
 Money expected = new Money(26, “usd”);
 Money result = m1.add(m2);
 assertEquals (expected, result);
 }
}

8.1.2 Choosing unit test cases

• show the component behaves correctly under
normal use
- For example, demonstrate (part of) a use case

• expose the defects/bugs
- For example, invalid input should generate error

message and fail gracefully

19

Two types of unit test cases:

Strategies for choosing unit test cases

• Partition testing: identify groups of inputs that
have common characteristics and should be
processed in the same way.
- choose tests from within each of these groups.

• Guideline-based testing: use testing guidelines
based on the kinds of errors that programmers
often make.
- choose tests based on these guidelines.

20

Partition testing

• Divide the input data of a software unit into
partitions of data
- program should behave similarly for all data in a given

partition

• Determine partitions from specifications

• Design test cases to cover each partition at least
once.

• If the partition is a range, also test boundary
values.

• Enables good test coverage with fewer test cases.

21

Equivalence partitions example

22

Between 10000 and 99999Less than 10000 More than 99999

9999
10000 50000

100000
99999

Input values

Between 4 and 10Less than 4 More than 10

3
4 7

11
10

Number of input values

Specification states the program accepts 4 to 10 inputs
which are five-digit integers (greater than 10,000)

Guideline-based testing
• Choose test cases based on previous experience

of common programming errors

• For example:
- Choose inputs that force the system to generate all error

messages
- Repeat the same input or series of inputs numerous times
- Try to force invalid outputs to be generated
- Force computation results to be too large or too small.
- Test sequences/lists using

✦ one element
✦ zero elements
✦ different sizes in different tests

23

8.1.3 Component testing

• Software components are made up of several
interacting objects (or sub-components)

• The functionality of these objects is accessed
through the defined component interface.

• Component testing is demonstrating that the
component interface behaves according to its
specification.
- Assuming the subcomponents (objects) have already

been unit-tested

24

Interface (component) testing

25

Small empty boxes represent the interface

B

C

Test
cases

A

Common interface errors

• Interface misuse
- Calling component uses another component’s interface

incorrectly e.g. parameters in the wrong order.

• Interface misunderstanding
- Calling component embeds assumptions about the

behavior of the called component which are incorrect.
- eg passing unordered array to binary search

• These are usually errors in the CALL to the
component, not within the component, so they
are tested during system testing.

26

8.1.4 System testing

• System testing: integrating components to create
a version of the system and then testing the
integrated system.

• Checks that:
- components are compatible,
- interact correctly
- transfer the right data at the right time across their

interfaces.

• Tests the interactions between components.

27

Use-case testing

• Use-cases developed to identify system
interactions are a good basis for system testing.

• The sequence diagrams documents the
components and interactions that are being
tested.

28

reportWeather sequence diagram

29

Shows which components are involved in a
test case that calls SatComms:request(report)

SatComms

request (report)

acknowledge
reportWeather ()

get (summary)

reply (report)

acknowledge

WeatherStation Commslink

summarise ()

WeatherData

acknowledge

send (report)

acknowledge

Weather
information system

Testing policies

• Exhaustive system testing is impossible

• Testing policies define the required subset of all
possible test cases, for an organization.

• Examples of testing policies:
- All system functions that are accessed through menus

should be tested.
- Combinations of functions (e.g. text formatting) that are

accessed through the same menu must be tested in
various sequences.

- Where user input is provided, all functions must be
tested with both correct and incorrect input.

30

8.2 Test-driven development

31

• An approach to program development (not testing)
in which you inter-leave testing and code
development.

• Tests are written before code, in small increments.

• Don’t move on to the next increment until the code
that you have developed passes its test.

• TDD was introduced in agile methods but it can
also be used in plan-driven development
processes.

Test-driven development

32

Identify new
functionality

Write test Run test
Implement

functionality and
refactor

fail

pass

Implement
functionality or

debug

test should fail the first time.

Benefits of test-driven development

33

• Code coverage
- All code written has at least one associated test.

• Regression testing
- A regression test suite is developed incrementally as a

program is developed.
- Run these after each change, to make sure nothing got broken

• Simplified debugging
- When a test fails, it should be obvious where the problem lies.

• System documentation
- The tests themselves are a form of documentation that

describe what the code should be doing.

8.3 Release testing

34

• Testing a particular release of a system that is
intended for use outside of the development team.

• Primary goal: convince the supplier of the system
that it is good enough for use.

• Similar to system testing, but
- Tested by a team other than developers.
- Focus is on regular use (not defects).

• Usually a black-box testing process where tests are
only derived from the system specification.

8.3.1 Requirements-based testing

35

• Examine each requirement in the SRS and develop a
test (or tests) for it.

• Example requirements from MHC-PMS system:
- If a patient is known to be allergic to any particular medication,

then prescription of that medication shall result in a warning
message being issued to the system user.

- If a prescriber chooses to ignore an allergy warning, they shall
provide a reason why this has been ignored.

Tests developed to test the requirement

36

- Set up a patient record with no known allergies. Prescribe
medication for allergies that are known to exist. Check that a
warning message is not issued by the system.

- Set up a patient record with a known allergy. Prescribe the
medication to that the patient is allergic to, and check that the
warning is issued by the system.

- Also write tests for more than one known allergy, prescribing more
than one drug, etc.

- Prescribe a drug that issues a warning and overrule that warning.
Check that the system requires the user to provide information
explaining why the warning was overruled.

8.3.2 Scenario testing

37

• A scenario is a story that describes one way in which
the system might be used
- Longer than an “interaction”, may be several interactions
- May have scenarios that were used during requirements

engineering.

• To use a scenario for release testing:
- tester assumes role of user, acting out scenario
- may make deliberate mistakes
- takes note of problems (slow response, etc.)

• Tests several requirements at once, in combination.

Scenario from MHC-PMS

38

Kate is a nurse who specializes in mental health care. One of her responsibilities is
to visit patients at home to check that their treatment is effective and that they are
not suffering from medication side-effects.
On a day for home visits, Kate logs into the MHC-PMS and uses it to print her
schedule of home visits for that day, along with summary information about the
patients to be visited. She requests that the records for these patients be
downloaded to her laptop. She is prompted for her key phrase to encrypt the
records on the laptop.
One of the patients that she visits is Jim, who is being treated with medication for
depression. Jim feels that the medication is helping him but believes that it has the
side-effect of keeping him awake at night. Kate looks up Jim’s record and is
prompted for her key phrase to decrypt the record. She checks the drug prescribed
and queries its side effects. Sleeplessness is a known side effect so she notes the
problem in Jim’s record and suggests that he visits the clinic to have his medication
changed. He agrees so Kate enters a prompt to call him when she gets back to the
clinic to make an appointment with a physician. She ends the consultation and the
system re-encrypts Jim’s record.
After, finishing her consultations, Kate returns to the clinic and uploads the records
of patients visited to the database. The system generates a call list of those patients
who she has to contact for follow-up information and make clinic appointments.

Features tested by the scenario

39

• Authentication by logging on to the system.
• Downloading and uploading of specified patient

records to a laptop.
• Home visit scheduling.
• Encryption and decryption of patient records on a

mobile device.
• Record retrieval and modification.
• Links with the drugs database that maintains side-

effect information.
• The system for call prompting.

8.3.3 Performance testing

40

• Designing and running tests to show the system can
process its intended load.

• Use a typical operational profile: a set of tests that
reflect the actual mix of work that will be handled by
the system.

• Stress testing is a form of performance testing where
the system is deliberately overloaded to test its
failure behavior.

• The load is steadily increased until the system
performance becomes unacceptable.

• Stress testing often required for distributed systems.

8.4 User testing

41

• Users or customers provide input and advice on
system testing.
- formal process where user tests a custom system or
- informal process where user experiments with system

• User testing is essential, even when comprehensive

system and release testing have been carried out.
- Influences from the user’s working environment have a major

effect on the reliability, performance, usability and robustness
of a system.

- These cannot be replicated in a testing environment.

Types of user testing

42

• Alpha testing
- Users of the software work with the development team to test

the software at the developer’s site.
- custom software

• Beta testing
- A release of the software is made available to users to allow

them to experiment and to report problems
- usually generic software

• Acceptance testing
- Customers test a system to decide whether or not it is ready to

be accepted from the system developers.
- acceptance implies payment is due, may require negotiation.
- custom software.

