
1

Introduction to ADTs
Abstract Data Types

CS 3358
Summer I 2012

Jill Seaman

2

Data Structure
 A particular way of storing and organizing data in

a computer so that it can be used efficiently

 A data type having
- a specific, physical representation of the data
- operations over its data

 A concrete description
 defined in terms of how it is implemented

- implementation-dependent

*from wikipedia

3

Abstract Data Type
 A set of data values and associated operations

that are precisely specified independent of any
particular implementation.

 A data type having
- a logical representation of the data
- operations over its data

 A logical description
 may be implemented in various ways

- implementation-independent

*from http://xlinux.nist.gov/dads/

4

Data Structures again
 The term “data structures” is often extended to

include both concrete AND logical descriptions
of complicated data types.

 A list of data structures could include ADTs
- arrays
- linked lists
- stacks
- queues
- vectors or lists

5

Commonly used ADTs

 The purpose of many commonly used ADTs is to:
- store a collection of objects
- potentially organize the objects in a specific way
- provide potentially limited access to the objects

 These ADTs are often called
- containers
- collections
- container classes 6

Commonly used ADTs

 Examples:
- List (or sequence or vector)
- Set
- Multi-set (or bag)
- Stack and Queue
- Tree
- Map (or dictionary)

7

A List ADT
 Values: ordered (1st, 2nd, etc) set of objects
 Operations:

- constructor: creates an empty list
- isEmpty: is the list empty
- size: returns the number of elements
- add an element to the end of the list
- remove the last element
- return the element at position i
- change the element at position (to another value)

8

A Set ADT
 Values: collection of unique objects
 Operations:

- constructor: creates an empty set
- isEmpty: is the set empty
- size: returns the number of elements
- add an element to the set (if not there)
- remove an element from the set (if it is there)
- isElement(x): true if x is in the set
- union: combine two sets into one

9

A Bag (multi-set) ADT
 Values: collection of objects (may have duplicates)
 Operations:

- constructor: creates an empty bag
- isEmpty: is the bag empty
- size: returns the number of elements
- add an element to the bag
- remove an element from the bag (if it is there)
- occurrences(x): how many times x is in the bag

10

Implementing an ADT
 Interface:

- class declaration
- prototypes for the operations
- data members for the actual representation
- *.h

 Implementation:
- function definitions for the operations
- depends on data members (their representation)
- *.cpp

11

Example ADT: bag version 1

class Bag
{
 public:
 Bag ();

 void insert(int element);
 void remove(int element);

 int occurrences(int element) const;
 bool isEmpty() const;
 int size() const;

 static const int CAPACITY = 20;

 private:
 int data[CAPACITY];
 int count;
};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

bag.h

bag.h

concrete representation

12

Example ADT: bag version 1
#include "bag.h"
#include <cassert>
using namespace std;

Bag::Bag () {
 count = 0;
}
void Bag::insert(int element) {
 assert (count < CAPACITY);
 data[count] = element;
 count++;
}
void Bag::remove(int element) {
 int index = -1;
 for (int i=0; i<count && index==-1; i++) {
 if (data[i]==element) {
 index = i;
 }
 }
 if (index!=-1) {
 data[index] = data[count-1];
 count--;
 }
} //continued...

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

bag.cpp

what does this do?

13

Example ADT: bag version 1

int Bag::occurrences(int element) const {
 int occurrences=0;
 for (int i=0; i<count; i++) {
 if (data[i]==element) {
 occurrences++;
 }
 }
 return occurrences;
}

bool Bag::isEmpty() const {
 return (count==0);
}

int Bag::size() const {
 return count;
}

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

bag.cpp, cont.

14

 bag “driver”

#include<iostream>
#include "Bag.h"
using namespace std;

int main ()
{
 Bag b;

 b.insert(4);
 b.insert(8);
 b.insert(4);

 cout << "size " << b.size() << endl;
 cout << "how many 4's: " << b.occurrences(4) << endl << endl;

 b.remove(4);
 cout << "removed a 4" << endl;
 cout << "size " << b.size() << endl;
 cout << "how many 4's: " << b.occurrences(4) << endl << endl;

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

bagTest.cpp

15

 bag “driver”

 Bag c(b);

 cout << "copied to c" << endl;
 cout << "size " << c.size() << endl;
 cout << "how many 4's: " << c.occurrences(4) << endl << endl;

 b.insert(10);
 cout << "added 10 to b" << endl;
 cout << "b.size " << b.size() << endl;
 cout << "c.size " << c.size() << endl << endl;

 cout << "starting insert of 20 items" << endl;
 for (int i=0; i<20; i++)
 b.insert(33);
 cout << "inserted 20 more items into b" << endl;

 return 0;
};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

bagTest.cpp

16

 bag “driver”: output

size 3
how many 4's: 2

removed a 4
size 2
how many 4's: 1

copied to c
size 2
how many 4's: 1

added 10 to b
b.size 3
c.size 2

starting insert of 20 items
Assertion failed: (count < CAPACITY), function insert, file
bag.cpp, line 12.
Abort trap: 6

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

output of running bagTest

17

Bag version 1 summary
 Implemented using a fixed size array
 When adding more elements than fit in the bag,

the program exits.
 Solution:

- use a dynamically allocated array
- when its capacity is reached, allocate a new, bigger

array.

18

 bag version 2

class Bag
{
 public:
 Bag ();

 Bag(const Bag &);
 ~Bag();
 void operator=(const Bag &);

 void insert(int element);
 void remove(int element);

 int occurrences(int element) const;
 bool isEmpty() const;
 int size() const;

 static const int INCREMENT = 20;

 private:
 int *data; //pointer to bag array
 int capacity; //size of the array
 int count; //number of elements currently in array
};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

bag.h

bag.h

concrete representation

“The big three”

19

bag version 2
Bag::Bag () {
 count = 0;
 capacity = INCREMENT;
 data = new int[capacity];
}

//copy constructor
Bag::Bag(const Bag &rhs) {
 data = new int[rhs.capacity]; //allocate new array

 capacity = rhs.capacity; //copy values
 count = rhs.count;
 for (int i=0; i<count; i++) {
 data[i] = rhs.data[i];
 }
}

//desctructor
Bag::~Bag() {
 delete [] data;
}

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

bag.cpp

20

bag version 2
void Bag::operator=(const Bag &rhs) {
 if (data) delete [] data; //delete old array
 data = new int[rhs.capacity]; //allocate new array

 capacity = rhs.capacity; //copy values
 count = rhs.count;
 for (int i=0; i<count; i++) {
 data[i] = rhs.data[i];
 }
}

void Bag::insert(int element) {
 //if count is at the capacity, resize
 if (count==capacity) {
 capacity += INCREMENT;
 int *newData = new int[capacity]; //new array
 for (int i=0; i<count; i++) { //copy values
 newData[i] = data[i];
 }
 delete [] data; //delete old array
 data = newData; //make data point to new
 }

 data[count] = element; //add new element
 count++;
}

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

bag.cpp, cont.

no changes to remaining functions!

21

 bag “driver”: output version 2

size 3
how many 4's: 2

removed a 4
size 2
how many 4's: 1

copied to c
size 2
how many 4's: 1

added 10 to b
b.size 3
c.size 2

starting insert of 20 items
inserted 20 more items into b

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

output of running bagTest

resizing succeeded!

