— B

Analysis of Algorithms

An Introduction

CS 3358
Summer | 2012

Jill Seaman

Note: in this lecture “function” almost always refers to
a mathematical function, as in f(x) = x+101

—

Algorithms

* Note that two very different algorithms can solve
the same problem

- bubble sort vs. quicksort

- List insert in an array-based implementation vs. a
linked-list-based implementation.

* How do we know which is faster (more efficient
in time)?

* Why not just run both on same data and
compare?

Algorithms

* An algorithm is a clearly specified set of
instructions a computer follows to solve a
problem.

* An algorithm should be
- correct
- efficient: not use too much time or space

« Algorithm analysis: determining how much time
and space a given algorithm will consume..

N

Algorithms

» Could measure the time each one takes to
execute, but that is subject to various external
factors

- multitasking operating system
- speed of computer
- language solution is written in (compiler)

* Need a way to quantify the efficiency of an
algorithm independently of execution platform,
language, or compiler

4

We use the number of statements executed as

an approximation of the execution time.

The amount of time it takes an algorithm to
execute is a function of the input size.

Estimating execution time

Count up statements in a program or method or
algorithm as a function of the amount of data

For a list of length N, it may take 3N2+2N+125
statements to sort it using a given algorithm.

N

—

—

Counting statements example

int total(int[] values, int numvValues)
{ int result = 0;
for(int i = 0; i < numValues; i++)
result += values[i];
return result;

}
What is N (input size) in this case?

the number of values in the array (humValues)
Tally up the statement count:

int result =0; (1) result += valuesl[i]; (N)
int i=0; (1) return result; (1)
I < numValues (N+1) ’Total = 3N +4 ‘ 7
i++ (N)

N

Counting statements

Each single statement (assignment, output)
counts as 1 statement

A boolean expression (in an if stmt or loop) is 1
statement

A function call is equal to the number of
statements executed by the function.

Aloop is basically the number of times the loop
executes times the number of statements
executed in the loop.

but usually counted in terms of N, the input size.
6

—

Comparing functions

Is 3N+4 good? Is it better (less) than
S5N+5 ?
N+1,000 ?
N2+N+27?

Hard to say without graphing them.

Even then, are the differences significant?

—

* When comparing these functions in algorithm
analysis

Comparing functions

- We are concerned with very large values of N.
- We tend to ignore all but the “dominant” term.

At large values of N, 3N dominates the 4 in 3N+4

- We also tend to ignore the constant factor (3).

* We want to know which function is growing faster
(getting bigger for bigger values of N).)

\
(__

* For a given function expressing the time it takes
to execute a given algorithm in terms of N,

- We ignore all but the dominant term and put it in one
of the function classifications.

Comparing functions

» Which classifications are more efficient?.
- The ones that grow more slowly.

—

Function classifications

 Linear

\

« Constant
- Logarithmic

« Linearithmic
* Quadratic
* Exponential

f(x)=b O(1)
f(x)=log,(x) O(log n)
f(x)=ax+b O(n)
f(x)=x log,(x) O(n log n)
f(x)=ax>+bx+c O(n?)
f(x)=bx O(2%)

Last column is “big Oh” notation

* Graph 1

Time

Comparing functions

log , N

I 1 1 1 | 1
1 2 4 8 16 32 o4 128

Data size (N)

—

Comparing functions

* Graph 2
Typical Analysis Functions
20 T T T
/ Constant —— |
Logrithnic ——
/ Linear
/ nlog n —
Quadrati
’ / - e Cubic ——
15 F f // /,AExponential
/ ”
w /
N
@ | / /
w / -
2 g0l / /
E | / /
Fl / / e
2
4
« ;
5 / e
{ e
/ - —
['" 7 ——

Formal Definition of Big O

“Order F of N”

* T(N) is O(F(N)) if there are positive constants c
and No such that T(N) <= cF(N) when N >= Ng

- N is the size of the data set the algorithm works on

- T(N) is the function that characterizes the actual
running time of the algorithm

- F(N) is a function that characterizes an upper
bounds on T(N). It is a limit on the running time of
the algorithm. (The typical Big O functions)

- ¢ and No are constants. We pick them to make the
definition work. s

—

* Assume N is 100,000, processing speed is
1,000,000,000 operations per second

Comparing functions

Function

Running Time

2N

3.2 x 1030086 years

N4

3171 years

N3

11.6 days

N2

10 seconds

N log N

0.0017 seconds

N

0.0001 seconds

square root of N

3.2 x 1077 seconds

log N

1.2 x 10-8 seconds

\

—

- Given T(N) = 3N + 4, prove it is O(N).
= F(N) in the definition is N

- We need to choose constants ¢ and No to make
T(N) <= cF(N) when N >= No true.

- Lets try c =4 and No = 5.

- Graph on next slide shows:
3N+4 is less than 4N when N is bigger than 5

Example using definition

Demonstrating 3N+4 is O(N)

¢ * F(N), in this case,
c=4,c*F(N)=4N

vertical axis:
execution time

T(N), actual function of time.
In this case 3N + 4

F(N), approximate function
of time. In this case N

i N,=5
horizontal axis: N, number of elements in data set
17

Best, Average Worst case analyses

- Best case: fewest possible statements executed
- least interesting

* Average case: number of statements executed
for most cases of input, or normal cases

- pick an input set that is randomly distributed

» Worst case: maximum number of statements that
could be executed

= pick input set that would require the most
statements to be executed.

Best, Average Worst case analyses

- Best case: fewest possible statements executed

- least interesting

* Average case: number of statements executed
for most cases of input, or normal cases

- pick an input set that is randomly distributed

» Worst case: maximum number of statements that
could be executed

- pick input set that would require the most
statements to be executed.

Example 1:

bool findNum(double[] values, int numValues, double num)
{
for(int i = 1; i < numValues; i++)
if(values[i] == num)
return true;
return false;

}

* T(N) is O(F(N)) for what function F?
- best case?
- average case?
- worst case?

20

Example 2: | Example 3:

Matrix add(Matrix rhs) public void selectionSort(double[] data, int numValues)
{ Matrix sum = new Matrix(numRows(), numCols(), 0); { %nt n = numValues;
for(int row = 0; row < numRows(); rowt+) int min;
for(int col = 0; col < numCols(); col++) double temp;

for(int i = 0; i < n; i++)

sum.myMatrix[row][col] = myMatrix[row][col] { min = 1i;

+ rhs.myMatrix[row][col];

for(int j = i+l; j < n; j++
return sum; (Jj i3 ;oJ+t)

} if(data[]j] < data[min])
min = j;
» T(N) is O(F(N)) for what function F? SGatali) - datatmini;
data[min] = temp;

}// end of outer loop, i

] Note: 1+2+3+...+N = N*(N+1)/2\

" * T(N) is O(F(N)) for what function F?

22
— e — " — e —
Example 4. | | Example 5:
public int foo(int[] list)({ .
int total = 0; * Insert (and remove) for List_3358
for(int i = 0; i < list.length; i++){
total += countbups(list[i], list); - implemented using arrays (in class: see below)
}
return total; = implemented using linked lists
} .
// method countDups is O(N) where N is the ‘ These Operatlons are O(—) ?
// length of the array it is passed
void List_3358::remove() {
assert(!atEOL() && !isEmpty());
for (int i=cursor; i < currentSize-1; i++)
. . values[i] = values[i+1];
* T(N) is O(F(N)) for what function F? currentSize--;
if (isEmpty())
23 cursor = EOL; 24
}

