
1

Analysis of Algorithms
An Introduction

CS 3358
Summer I 2012

Jill Seaman

Note: in this lecture “function” almost always refers to
a mathematical function, as in f(x) = x+101

2

Algorithms
 An algorithm is a clearly specified set of

instructions a computer follows to solve a
problem.

 An algorithm should be
- correct
- efficient: not use too much time or space

 Algorithm analysis: determining how much time
and space a given algorithm will consume.

3

Algorithms
 Note that two very different algorithms can solve

the same problem
- bubble sort vs. quicksort
- List insert in an array-based implementation vs. a

linked-list-based implementation.

 How do we know which is faster (more efficient
in time)?

 Why not just run both on same data and
compare?

4

Algorithms
 Could measure the time each one takes to

execute, but that is subject to various external
factors
- multitasking operating system
- speed of computer
- language solution is written in (compiler)

 Need a way to quantify the efficiency of an
algorithm independently of execution platform,
language, or compiler

5

Estimating execution time
 We use the number of statements executed as

an approximation of the execution time.
 The amount of time it takes an algorithm to

execute is a function of the input size.
 Count up statements in a program or method or

algorithm as a function of the amount of data
- For a list of length N, it may take 3N2+2N+125

statements to sort it using a given algorithm.

6

Counting statements
 Each single statement (assignment, output)

counts as 1 statement
 A boolean expression (in an if stmt or loop) is 1

statement
 A function call is equal to the number of

statements executed by the function.
 A loop is basically the number of times the loop

executes times the number of statements
executed in the loop.
- but usually counted in terms of N, the input size.

7

Counting statements example

 What is N (input size) in this case?
- the number of values in the array (numValues)

 Tally up the statement count:
- int result = 0; (1)
- int i=0; (1)
- i < numValues (N+1)
- i++ (N)

int total(int[] values, int numValues)
{ int result = 0;
 for(int i = 0; i < numValues; i++)
 result += values[i];
 return result;
}

- result += values[i]; (N)
- return result; (1)

Total = 3N + 4 8

Comparing functions

 Is 3N+4 good? Is it better (less) than
- 5N+5 ?
- N+1,000 ?
- N2 + N + 2 ?

 Hard to say without graphing them.
 Even then, are the differences significant?

9

Comparing functions

 When comparing these functions in algorithm
analysis
- We are concerned with very large values of N.
- We tend to ignore all but the “dominant” term.

At large values of N, 3N dominates the 4 in 3N+4

- We also tend to ignore the constant factor (3).
 We want to know which function is growing faster

(getting bigger for bigger values of N). 10

Function classifications
 Constant f(x)=b O(1)
 Logarithmic f(x)=logb(x) O(log n)
 Linear f(x)=ax+b O(n)
 Linearithmic f(x)=x logb(x) O(n log n)
 Quadratic f(x)=ax2+bx+c O(n2)
 Exponential f(x)=bx O(2x)

Last column is “big Oh” notation

11

Comparing functions

 For a given function expressing the time it takes
to execute a given algorithm in terms of N,
- We ignore all but the dominant term and put it in one

of the function classifications.

 Which classifications are more efficient?.
- The ones that grow more slowly.

12

Comparing functions

 Graph 1

Time

Data size (N)

13

Comparing functions
 Graph 2

14

Comparing functions

 Assume N is 100,000, processing speed is
1,000,000,000 operations per second

Function Running Time

2N 3.2 x 1030086 years

N4 3171 years

N3 11.6 days

N2 10 seconds

N log N 0.0017 seconds

N 0.0001 seconds

square root of N 3.2 x 10-7 seconds

log N 1.2 x 10-8 seconds

15

Formal Definition of Big O

 T(N) is O(F(N)) if there are positive constants c
and N0 such that T(N) <= cF(N) when N >= N0

➡ N is the size of the data set the algorithm works on
➡ T(N) is the function that characterizes the actual

running time of the algorithm
➡ F(N) is a function that characterizes an upper

bounds on T(N). It is a limit on the running time of
the algorithm. (The typical Big O functions)

➡ c and N0 are constants. We pick them to make the
definition work.

“Order F of N”

16

Example using definition

 Given T(N) = 3N + 4, prove it is O(N).
➡ F(N) in the definition is N
➡ We need to choose constants c and N0 to make

T(N) <= cF(N) when N >= N0 true.
➡ Lets try c = 4 and N0 = 5.
➡ Graph on next slide shows:

 3N+4 is less than 4N when N is bigger than 5

17

Demonstrating 3N+4 is O(N)

horizontal axis: N, number of elements in data set

vertical axis:
execution time

T(N), actual function of time.
In this case 3N + 4

F(N), approximate function
of time. In this case N

No = 5

c * F(N), in this case,
c = 4, c * F(N) = 4N

18

Best, Average Worst case analyses

 Best case: fewest possible statements executed
➡ least interesting

 Average case: number of statements executed
for most cases of input, or normal cases

➡ pick an input set that is randomly distributed
 Worst case: maximum number of statements that

could be executed
➡ pick input set that would require the most

statements to be executed.

19

Best, Average Worst case analyses

 Best case: fewest possible statements executed
➡ least interesting

 Average case: number of statements executed
for most cases of input, or normal cases

➡ pick an input set that is randomly distributed
 Worst case: maximum number of statements that

could be executed
➡ pick input set that would require the most

statements to be executed.
20

Example 1:

 T(N) is O(F(N)) for what function F?
➡ best case?
➡ average case?
➡ worst case?

bool findNum(double[] values, int numValues, double num)
{
 for(int i = 1; i < numValues; i++)
 if(values[i] == num)
 return true;
 return false;
}

21

Example 2:

 T(N) is O(F(N)) for what function F?

Matrix add(Matrix rhs)
{ Matrix sum = new Matrix(numRows(), numCols(), 0);
 for(int row = 0; row < numRows(); row++)
 for(int col = 0; col < numCols(); col++)
 sum.myMatrix[row][col] = myMatrix[row][col]
! ! + rhs.myMatrix[row][col];
 return sum;
}!

22

Example 3:

 T(N) is O(F(N)) for what function F?

public void selectionSort(double[] data, int numValues)
{ int n = numValues;
 int min;
 double temp;
 for(int i = 0; i < n; i++)
 { min = i;
 ! for(int j = i+1; j < n; j++)
! if(data[j] < data[min])
! min = j;
 temp = data[i];
! data[i] = data[min];
! data[min] = temp;
 }// end of outer loop, i
}

Note: 1+2+3+...+N = N*(N+1)/2

23

Example 4:

 T(N) is O(F(N)) for what function F?

public int foo(int[] list){
 int total = 0;
 for(int i = 0; i < list.length; i++){
 total += countDups(list[i], list);
 }
 return total;
}
// method countDups is O(N) where N is the
// length of the array it is passed

24

Example 5:

 Insert (and remove) for List_3358
➡ implemented using arrays (in class: see below)
➡ implemented using linked lists

 These operations are O(__) ?

void List_3358::remove() {
 assert(!atEOL() && !isEmpty());
 for (int i=cursor; i < currentSize-1; i++)
 values[i] = values[i+1];
 currentSize--;
 if (isEmpty())
 cursor = EOL;
}

