
1

Heaps
Chapter 21

CS 3358
Summer I 2012

Jill Seaman

2

Binary heap data structure

 A binary heap is a special kind of binary tree
- has a restricted structure (must be complete)
- has an ordering property (parent value is

smaller than child values)
 Used in the following applications

- Priority queue implementation: supports
enqueue and deleteMin operations in O(log N)

- Heap sort: another O(N log N) sorting algorithm.

3

Binary Heap:
structure property

 Complete binary tree: a tree that is
completely filled
- every level except the last is completely filled.
- the bottom level is filled left to right (the leaves

are as far left as possible).

4

Complete Binary Trees

 A complete binary tree can be easily stored in
an array
- place the root in position 1 (for convenience)

5

Complete Binary Trees
Properties

 The height of a complete binary tree is floor(log2 N)
(floor = biggest int less than)

 In the array representation:
- put root at location 1
- use an int variable (size) to store number of nodes
- for a node at position i:

- left child at position 2i (if 2i <= size, else i is leaf)
- right child at position 2i+1 (if 2i+1 <= size, else i is leaf)
- parent is in position floor(i/2) (or use integer division)

6

Binary Heap:
ordering property

 In a heap, if X is a parent of Y, value(X) is less
than or equal to value(Y).
- the minimum value of the heap is always at the

root.

7

Binary Heap: operations
 constructor, destructor
 isEmpty() (returns bool)
 makeEmpty()
 insert(x)
 findMin() (returns ItemType)
 deleteMin()

 Goal: logarithmic time (O(log n)) or better
 Must maintain heap properties after each operation

8

Heap class declaration
template<class ItemType>
class Heap_3358 {
public:

 Heap_3358();

 void makeEmpty();
 bool isEmpty() const;
 void insert(const ItemType &);
 ItemType findMin();
 void deleteMin();

private:
 int theSize; //number of nodes in tree
 vector<ItemType> array; //tree stored as array

};

9

Heap: simple methods
template<class ItemType>
Heap_3358<ItemType>::Heap_3358 ()
: array(11), theSize(0)
{ }

template<class ItemType>
void Heap_3358 <ItemType>::makeEmpty() {

 theSize = 0;
}

template<class ItemType>
bool Heap_3358 <ItemType>::isEmpty() const {

 return theSize==0;
}

template<class ItemType>
ItemType Heap_3358 <ItemType>::findMin() {

 assert(!isEmpty());
 return array[1];
}

 First: add a node to tree.
- must be at next available location, size+1, in order

to maintain a complete tree.
 Now maintain the ordering property:

- if x is greater than its parent: done
- else swap with parent
- repeat

 Called “percolate up” or “reheap up”
 preserves ordering property
 O(log n), work is proportional to path length

10

Heap: insert(x)

11

Heap: insert(x)

12

Heap: insert(x)

template<class ItemType>
void Heap_3358 <ItemType>::insert(const ItemType& newItem)
{
 //make newItem the sentinel
 array[0] = newItem;

 //resize if necessary
 if (theSize+1 == array.size())
 array.resize(array.size()*2 + 1);

 //Percolate up
 theSize++; //increment size
 int hole = theSize; //the new location

 for (; newItem < array[hole/2]; hole=hole/2) // hole/2=parent
 array[hole] = array[hole/2]; // move value down path (“swap”)

 array[hole] = newItem; // place in final spot

}

Places newItem in position 0,
the parent of the root.
Makes the loop stop if newItem
is the new minimum.

 Minimum is at the root, removing it leaves a hole.
 The last element in the tree must be relocated:

- move last element up to the root
- find smaller of the two children
- if the smaller child is smaller than the parent:

 swap it with the parent, repeat
- otherwise, we are done

 Called “percolate down” or “reheap down”
 preserves ordering property
 O(log n), work is proportional to path length

13

Heap: deleteMin()

14

Heap: deleteMin()

15

Heap: deleteMin()
template<class ItemType>
void Heap_3358 <ItemType>::deleteMin()
{
 assert(!isEmpty());
 ItemType tmp = array[theSize]; //save this for final swap
 theSize--;

 //Percolate down
 int hole, child;
 for (hole = 1 ; hole*2 <= theSize; hole = child) {
 child = hole * 2; // the left child

 // if there’s a right child, compare and pick lesser
 if (child != theSize && array[child+1] < array[child])
 child++;

 if (array[child] < tmp) // compare lesser child to parent
 array[hole] = array[child]; // if lesser, swap
 else
 break;
 }
 array[hole] = tmp; // complete last swap
}

 Using a heap to sort a list:
1. insert every item into a binary heap
2. extract every item by calling deleteMin N times.

 Runtime Analysis: O(N log N)
- step 1: insert is O(log N) and it’s done N times,

so it’s O(N log N)
- step 2: deleteMin is O(log N), and it’s done N

times, so it’s O(N log N)

16

Heapsort

 Space analysis:
- currently two arrays are needed:
- one for heap, one for sorted list.

 If we use a Max heap (parent is always greater than
children) then we can re-use the empty part of array
for the sorted elements.
- Then we need only one array.

17

Heapsort

49

After inserting all items
into the heap

[0]

[1]

[2]

[3]

[4]

[5]

[6]

70

60

12

40

30

 6

10

values

 70

 0

 60

 1

40

 3

30

 4

12

 2

 6

 5

 root

10

 6

Note: Max heap

51

After swapping root element
into its place

[0]

[1]

[2]

[3]

[4]

[5]

[6]

values

 10

 0

 60

 1

40

 3

30

 4

12

 2

 6

 5

 root

70

 6

10

60

12

40

30

 6

70
NO NEED TO CONSIDER AGAIN

52

After percolate down

[0]

[1]

[2]

[3]

[4]

[5]

[6]

values

 60

 0

 40

 1

10

 3

30

 4

12

 2

 6

 5

 root

70

 6

60

40

12

10

30

 6

70

54

After swapping root element
into its place

[0]

[1]

[2]

[3]

[4]

[5]

[6]

values

 6

 0

 40

 1

10

 3

30

 4

12

 2

 root

70

 6

 6

40

12

10

30

60

70
NO NEED TO CONSIDER AGAIN

 60

 5

55

[0]

[1]

[2]

[3]

[4]

[5]

[6]

values

40

 0

 30

 1

10

 3

 6

 4

12

 2

 root

70

 6

40

30

12

10

 6

60

70

 60

 5

After percolate down

57

[0]

[1]

[2]

[3]

[4]

[5]

[6]

values

 6

 0

 30

 1

10

 3

12

 2

 root

70

 6

 60

 5

After swapping root element
into its place

40

 4

 6

30

12

10

40

60

70
NO NEED TO CONSIDER AGAIN

58

[0]

[1]

[2]

[3]

[4]

[5]

[6]

values

 30

 0

 10

 1

 6

 3

12

 2

 root

70

 6

 60

 5

40

 4

30

10

12

 6

40

60

70

After percolate down

60

[0]

[1]

[2]

[3]

[4]

[5]

[6]

values

 6

 0

 10

 1

12

 2

 root

70

 6

 60

 5

40

 4

After swapping root element
into its place

 6

10

12

30

40

60

70

30

 3

NO NEED TO CONSIDER AGAIN
61

[0]

[1]

[2]

[3]

[4]

[5]

[6]

values

 12

 0

 10

 1

 6

 2

 root

70

 6

 60

 5

40

 4

12

10

 6

30

40

60

70

30

 3

After percolate down

63

[0]

[1]

[2]

[3]

[4]

[5]

[6]

values

 6

 0

 10

 1

 root

70

 6

 60

 5

40

 4

30

 3

After swapping root element
into its place

NO NEED TO CONSIDER AGAIN

12

 2

 6

10

12

30

40

60

70

64

[0]

[1]

[2]

[3]

[4]

[5]

[6]

values

 10

 0

 6

 1

 root

70

 6

 60

 5

40

 4

30

 3

12

 2

10

 6

12

30

40

60

70

After percolate down

66

[0]

[1]

[2]

[3]

[4]

[5]

[6]

values
 root

70

 6

 60

 5

40

 4

30

 3

12

 2

After swapping root element
into its place

 6

10

12

30

40

60

70

 10

 1

 6

 0

ALL ELEMENTS ARE SORTED

