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Binary Heap:
structure property
« Complete binary tree: a tree that is
completely filled

- every level except the last is completely filled.

- the bottom level is filled left to right (the leaves
are as far left as possible).

Binary heap data structure

* A binary heap is a special kind of binary tree

- has a restricted structure (must be complete)

- has an ordering property (parent value is
smaller than child values)

» Used in the following applications

- Priority queue implementation: supports
enqueue and deleteMin operations in O(log N)

- Heap sort: another O(N log N) sorting algorithm.

Complete Binary Trees

* A complete binary tree can be easily stored in
an array

- place the root in position 1 (for convenience)




Complete Binary Trees
Properties

* The height of a complete binary tree is floor(log> N)

(floor = biggest int less than)
¢ In the array representation:

- put root at location 1

- use an int variable (size) to store number of nodes

- for a node at position i:
- left child at position 21 (if 2i <= size, else i is leaf)
- right child at position 2i+1 (if 2i+1 <= size, else i is leaf)
- parent is in position floor (i/2) (or use integer division)
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Binary Heap: operations

* constructor, destructor

* isEmpty() (returns bool)
* makeEmpty()

* insert(x)

* findMin()

* deleteMin()

(returns ltemType)

» Goal: logarithmic time (O(log n)) or better
* Must maintain heap properties after each oper7ation
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Binary Heap:
ordering property
* In a heap, if X is a parent of Y, value(X) is less
than or equal to value(Y).

- the minimum value of the heap is always at the
root.
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Figure 21.3 Two complete trees: (a) a heap; (b) not a heap. 6

Heap class declaration

template<class ItemType>
class Heap_3358 {
public:

Heap 3358();

void makeEmpty();

bool isEmpty() const;

void insert(const ItemType &);
ItemType findMin();

void deleteMin();

private:
int theSize;
vector<ItemType> array;

//number of nodes in tree
//tree stored as array




Heap: simple methods

template<class ItemType>

Heap 3358<ItemType>::Heap_3358 ()
: array(1ll), theSize(0)

{1}

template<class ItemType>
void Heap 3358 <ItemType>::makeEmpty() {

theSize = 0;
}

template<class ItemType>
bool Heap 3358 <ItemType>::isEmpty() const {

return theSize==

}

template<class ItemType>
ItemType Heap_ 3358 <ItemType>::findMin() {

assert(!isEmpty());
return array([1l];

Heap: insert(x)

First: add a node to tree.

- must be at next available location, size+1, in order
to maintain a complete tree.

* Now maintain the ordering property:
- if x is greater than its parent: done
- else swap with parent

- repeat

Called “percolate up” or “reheap up”

* preserves ordering property
* O(log n), work is proportional to path length

Heap: insert(x)
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Figure 21.7  Attempt to insert 14, creating the hole and bubbling the hole up.
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Figure 21.8

g two steps required to insert 14 in the original heap
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Heap: insert(x)

template<class ItemType>
void Heap 3358 <ItemType>::insert(const ItemType& newItem)

{
//make newItem the sentinel - —
array[0] = newItem; Places newltem in position 0,
the parent of the root.
//resize if necessary Makes the loop stop if newltem
if (theSize+l == array.size()) is the new minimum.
array.resize(array.size()*2 + 1);
//Percolate up
theSize++; //increment size
int hole = theSize; //the new location
for ( ; newItem < array[hole/2]; hole=hole/2) // hole/2=parent
array[hole] = array[hole/2]; // move value down path (“swap”)
array[hole] = newItem; // place in final spot
} 12
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Heap: deleteMin()

* Minimum is at the root, removing it leaves a hole.
* The last element in the tree must be relocated:

- move last element up to the root
find smaller of the two children

if the smaller child is smaller than the parent:
swap it with the parent, repeat

- otherwise, we are done
* Called “percolate down” or “reheap down”

* preserves ordering property
* O(log n), work is proportional to path length

Heap: deIeteMln()

Figure 21.10 Creation of the hole at the root.
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Figure 21.11 The next two steps in the deleteMin operation.
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Figure 21.12 The Last two steps in the deleteMin operation.

Heap: deleteMin()

template<class ItemType>

void Heap_3358 <ItemType>::deleteMin()

{
assert(!isEmpty());
ItemType tmp = array[theSize]; //save this for final swap
theSize--;

//Percolate down

int hole, child;

for (hole = 1 ; hole*2 <= theSize; hole = child) {
child = hole * 2; // the left child

// if there’'s a right child, compare and pick lesser
if (child != theSize && array[child+1l] < array[child])

child++;
if (array[child] < tmp) // compare lesser child to parent
array[hole] = array[child]; // if lesser, swap
else
break;
}
array[hole] = tmp; // complete last swap 15

Heapsort

* Using a heap to sort a list:

1. insert every item into a binary heap
2. extract every item by calling deleteMin N times.

* Runtime Analysis: O(N log N)

- step 1: insert is O(log N) and it's done N times,
so it's O(N log N)

- step 2: deleteMin is O(log N), and it's done N
times, so it's O(N log N)




Heapsort

* Space analysis:

- currently two arrays are needed:
- one for heap, one for sorted list.

* If we use a Max heap (parent is always greater than
children) then we can re-use the empty part of array
for the sorted elements.

- Then we need only one array.
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After swapping root element

into its place After percolate down
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After swapping root element
into its place After percolate down
values values
[0] 6 root [0] 10 root
1] o ] o
[2]| 12 0 [2]| 12 0
(31| 30 10 | 12 . (31 a0 6 | 12 .
1 2 1 2
(417 40 30 40 60 70 (41} 40 30 40 60 70
[51] 60 3 4 5 6 [51] 60 3 4 5
[6]1] 70 | [6]1] 70
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After swapping root element
into its place

values
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