Heaps
Chapter 21

CS 3358
Summer | 2012

Jill Seaman

lII

Binary Heap:
structure property
« Complete binary tree: a tree that is
completely filled

- every level except the last is completely filled.

- the bottom level is filled left to right (the leaves
are as far left as possible).

Binary heap data structure

* A binary heap is a special kind of binary tree

- has a restricted structure (must be complete)

- has an ordering property (parent value is
smaller than child values)

» Used in the following applications

- Priority queue implementation: supports
enqueue and deleteMin operations in O(log N)

- Heap sort: another O(N log N) sorting algorithm.

Complete Binary Trees

* A complete binary tree can be easily stored in
an array

- place the root in position 1 (for convenience)

Complete Binary Trees
Properties

* The height of a complete binary tree is floor(log> N)

(floor = biggest int less than)
¢ In the array representation:

- put root at location 1

- use an int variable (size) to store number of nodes

- for a node at position i:
- left child at position 21 (if 2i <= size, else i is leaf)
- right child at position 2i+1 (if 2i+1 <= size, else i is leaf)
- parent is in position floor (i/2) (or use integer division)

5

|

Binary Heap: operations

* constructor, destructor

* isEmpty() (returns bool)
* makeEmpty()

* insert(x)

* findMin()

* deleteMin()

(returns ltemType)

» Goal: logarithmic time (O(log n)) or better
* Must maintain heap properties after each oper7ation

\

Binary Heap:
ordering property
* In a heap, if X is a parent of Y, value(X) is less
than or equal to value(Y).

- the minimum value of the heap is always at the
root.

IE?// (16 1 i
) —t 4
/

@ (31) 19 68 (6) 3 J@

N’ — 3 (
J \ \
O® @ ®®
(a) (b)
Figure 21.3 Two complete trees: (a) a heap; (b) not a heap. 6

Heap class declaration

template<class ItemType>
class Heap_3358 {
public:

Heap 3358();

void makeEmpty();

bool isEmpty() const;

void insert(const ItemType &);
ItemType findMin();

void deleteMin();

private:
int theSize;
vector<ItemType> array;

//number of nodes in tree
//tree stored as array

Heap: simple methods

template<class ItemType>

Heap 3358<ItemType>::Heap_3358 ()
: array(1ll), theSize(0)

{1}

template<class ItemType>
void Heap 3358 <ItemType>::makeEmpty() {

theSize = 0;
}

template<class ItemType>
bool Heap 3358 <ItemType>::isEmpty() const {

return theSize==

}

template<class ItemType>
ItemType Heap_ 3358 <ItemType>::findMin() {

assert(!isEmpty());
return array([1l];

Heap: insert(x)

First: add a node to tree.

- must be at next available location, size+1, in order
to maintain a complete tree.

* Now maintain the ordering property:
- if x is greater than its parent: done
- else swap with parent

- repeat

Called “percolate up” or “reheap up”

* preserves ordering property
* O(log n), work is proportional to path length

Heap: insert(x)

14 ¥ e

21 - b
- ~ — AR
24 3 19 68 24
&)) @ ® @

Figure 21.7 Attempt to insert 14, creating the hole and bubbling the hole up.

.}'\o#"
@@ d o & ®
@@O OBDE
Figure 21.8

g two steps required to insert 14 in the original heap
momtheZl7 11

14

Heap: insert(x)

template<class ItemType>
void Heap 3358 <ItemType>::insert(const ItemType& newItem)

{
//make newItem the sentinel - —
array[0] = newItem; Places newltem in position 0,
the parent of the root.
//resize if necessary Makes the loop stop if newltem
if (theSize+l == array.size()) is the new minimum.
array.resize(array.size()*2 + 1);
//Percolate up
theSize++; //increment size
int hole = theSize; //the new location
for (; newItem < array[hole/2]; hole=hole/2) // hole/2=parent
array[hole] = array[hole/2]; // move value down path (“swap”)
array[hole] = newItem; // place in final spot
} 12

{

Heap: deleteMin()

* Minimum is at the root, removing it leaves a hole.
* The last element in the tree must be relocated:

- move last element up to the root
find smaller of the two children

if the smaller child is smaller than the parent:
swap it with the parent, repeat

- otherwise, we are done
* Called “percolate down” or “reheap down”

* preserves ordering property
* O(log n), work is proportional to path length

Heap: deIeteMln()

Figure 21.10 Creation of the hole at the root.

@ ®\ﬂ

o . qﬁ
@ & O |) ®
&0 31 55@: 31

Figure 21.11 The next two steps in the deleteMin operation.

@' ﬁb
S ® @ o & ®
C)@Sl q;;)@ 14

Figure 21.12 The Last two steps in the deleteMin operation.

Heap: deleteMin()

template<class ItemType>

void Heap_3358 <ItemType>::deleteMin()

{
assert(!isEmpty());
ItemType tmp = array[theSize]; //save this for final swap
theSize--;

//Percolate down

int hole, child;

for (hole = 1 ; hole*2 <= theSize; hole = child) {
child = hole * 2; // the left child

// if there’'s a right child, compare and pick lesser
if (child != theSize && array[child+1l] < array[child])

child++;
if (array[child] < tmp) // compare lesser child to parent
array[hole] = array[child]; // if lesser, swap
else
break;
}
array[hole] = tmp; // complete last swap 15

Heapsort

* Using a heap to sort a list:

1. insert every item into a binary heap
2. extract every item by calling deleteMin N times.

* Runtime Analysis: O(N log N)

- step 1: insert is O(log N) and it's done N times,
so it's O(N log N)

- step 2: deleteMin is O(log N), and it's done N
times, so it's O(N log N)

Heapsort

* Space analysis:

- currently two arrays are needed:
- one for heap, one for sorted list.

* If we use a Max heap (parent is always greater than
children) then we can re-use the empty part of array
for the sorted elements.

- Then we need only one array.

[0]
[1]
[2]
[3]
[4]
[5]
[6]

After swapping root element

values

into its place

10

root

60

12

40

30

W] (e

3 4 5

70

] 77— NO NEED TO CONSIDER AGAIN

51

[0]
[1]
[2]
[3]
[4]
[5]
[6]

[0]
[1]
[2]
[3]
[4]
[5]
[6]

After inserting all items

values

70

60

12

40

30

10

values

60

40

12

10

30

70

into the heap

] Note: Max heap

root

49

After percolate down

52

[0]
[1]
[2]
[3]
[4]
[5]
[6]

[0]
[1]
[2]
[3]
[4]
[5]
[6]

After swapping root element

values

40

12

10

30

60

70

™~

into its place

NO NEED TO CONSIDER AGAIN

54

After swapping root element

values

30

12

10

40

60

70 |

into its place

NO NEED TO CONSIDER AGAIN

57

[0]
[1]
[2]
[3]
[4]
[5]
[6]

[0]
[1]
[2]
[3]
[4]
[5]
[6]

values

40

30

12

10

60

70

values

30

10

12

40

60

70

After percolate down

55

After percolate down

58

After swapping root element

into its place After percolate down
values values
[0] 6 [0]] 12
(11| 10 [11] 10
[2]] 12 [2] 6
[31| 30 [31] 30
(417 40 30 40 60 70 [41] 40
[51] 60 3 4 5 6 [51] 60 3 4 5 6
[6]1] 70 | [6]1] 70
NO NEED TO CONSIDER AGAIN
After swapping root element
into its place After percolate down
values values
[0] 6 root [0] 10 root
1] o] o
[2]| 12 0 [2]| 12 0
(31| 30 10 | 12 . (31 a0 6 | 12 .
1 2 1 2
(417 40 30 40 60 70 (41} 40 30 40 60 70
[51] 60 3 4 5 6 [51] 60 3 4 5
[6]1] 70 | [6]1] 70
NO NEED TO CONSIDER AGAIN

63 64

After swapping root element
into its place

values

[0] 6 root \

[11] 10 6

[2] | 12 0

(31| a0 / 10 \ 12 \

1 2
4
(411 a0 30 40 60 70
[51] 60 3 4 5 6
[61| 70
ALL ELEMENTS ARE SORTED

66

