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Binary heap data structure

 A binary heap is a special kind of binary tree
- has a restricted structure (must be complete)
- has an ordering property (parent value is 

smaller than child values)
 Used in the following applications

- Priority queue implementation: supports 
enqueue and deleteMin operations in O(log N)

- Heap sort: another O(N log N) sorting algorithm.
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Binary Heap:
structure property

 Complete binary tree: a tree that is 
completely filled
- every level except the last is completely filled.
- the bottom level is filled left to right (the leaves 

are as far left as possible).

4

Complete Binary Trees

 A complete binary tree can be easily stored in 
an array
- place the root in position 1 (for convenience)
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Complete Binary Trees
Properties

 The height of a complete binary tree is floor(log2 N)      
(floor = biggest int less than)

 In the array representation:
- put root at location 1
- use an int variable (size) to store number of nodes
- for a node at position i:

- left child at position 2i           (if 2i <= size, else i is leaf)
- right child at position 2i+1  (if 2i+1 <= size, else i is leaf) 
- parent is in position floor(i/2) (or use integer division)
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Binary Heap:
ordering property

 In a heap, if X is a parent of Y, value(X) is less 
than or equal to value(Y).
- the minimum value of the heap is always at the 

root.
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Binary Heap: operations
 constructor, destructor
 isEmpty()   (returns bool)
 makeEmpty()
 insert(x)
 findMin()     (returns ItemType)
 deleteMin() 

 Goal: logarithmic time (O(log n)) or better
 Must maintain heap properties after each operation
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Heap class declaration
template<class ItemType>
class Heap_3358 {
public:
    
    Heap_3358();
    
    void makeEmpty();
    bool isEmpty() const;
    void insert(const ItemType &);
    ItemType findMin();
    void deleteMin();
    
private:
    int theSize;              //number of nodes in tree
    vector<ItemType> array;   //tree stored as array
        
}; 
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Heap: simple methods
template<class ItemType>
Heap_3358<ItemType>::Heap_3358 ()
: array(11), theSize(0)
{ }

template<class ItemType>
void Heap_3358 <ItemType>::makeEmpty() {

    theSize = 0;    
}

template<class ItemType>
bool Heap_3358 <ItemType>::isEmpty() const {
  
    return theSize==0;
}

template<class ItemType>
ItemType Heap_3358 <ItemType>::findMin() {

    assert(!isEmpty());
    return array[1];
}

 First: add a node to tree.
- must be at next available location, size+1, in order 

to maintain a complete tree.
 Now maintain the ordering property:

- if x is greater than its parent: done
- else swap with parent 
- repeat

 Called “percolate up” or “reheap up”
 preserves ordering property 
 O(log n), work is proportional to path length
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Heap: insert(x)
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Heap: insert(x)
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Heap: insert(x)

template<class ItemType>
void Heap_3358 <ItemType>::insert(const ItemType& newItem)
{  
   //make newItem the sentinel  
   array[0] = newItem;

   //resize if necessary
   if (theSize+1 == array.size())
      array.resize(array.size()*2 + 1);
    
   //Percolate up
   theSize++;           //increment size
   int hole = theSize;  //the new location

   for (  ; newItem < array[hole/2]; hole=hole/2)  // hole/2=parent
     array[hole] = array[hole/2];   // move value down path (“swap”)

   array[hole] = newItem;           // place in final spot
    
}

Places newItem in position 0,
the parent of the root.
Makes the loop stop if newItem
is the new minimum.



 Minimum is at the root, removing it leaves a hole.
 The last element in the tree must be relocated:

- move last element up to the root
- find smaller of the two children
- if the smaller child is smaller than the parent:

    swap it with the parent, repeat
- otherwise, we are done

 Called “percolate down” or “reheap down”
 preserves ordering property 
 O(log n), work is proportional to path length
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Heap: deleteMin()
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Heap: deleteMin()
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Heap: deleteMin()
template<class ItemType>
void Heap_3358 <ItemType>::deleteMin()
{
   assert(!isEmpty());
   ItemType tmp = array[theSize]; //save this for final swap
   theSize--;
    
   //Percolate down
   int hole, child;
   for (hole = 1 ; hole*2 <= theSize; hole = child) {
      child = hole * 2;    // the left child

      // if there’s a right child, compare and pick lesser
      if (child != theSize && array[child+1] < array[child])
         child++;

      if (array[child] < tmp)    // compare lesser child to parent
         array[hole] = array[child];    // if lesser, swap
      else
         break;
   }
   array[hole] = tmp;           // complete last swap
}

 Using a heap to sort a list:
1. insert every item into a binary heap
2. extract every item by calling deleteMin N times.

 Runtime Analysis:  O(N log N)
- step 1: insert is O(log N) and it’s done N times, 

so it’s O(N log N)
- step 2: deleteMin is O(log N), and it’s done N 

times, so it’s O(N log N)
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Heapsort



 Space analysis:
- currently two arrays are needed:
- one for heap, one for sorted list.

 If we use a Max heap (parent is always greater than 
children) then we can re-use the empty part of array 
for the sorted elements.
- Then we need only one array.
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Heapsort
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After inserting all items 
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After swapping root element 
into its place 
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After percolate down 
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After swapping root element 
into its place 
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