
1

Review: Objects and classes
(Chapter 2)

CS 3358
Summer I 2012

Jill Seaman

2

Object Oriented Programming
 An object contains

- data (or “state”)
- functions that operate over its data

 Usually set up so code outside the object can
access the data only via the member functions.

 If the representation of the data in the object
needs to change:
- The object’s functions must be redefined to handle

the changes.
- The code outside the object does not need to

change, it accesses the object in the same way.

3

Object Oriented Programming
Concepts

 Encapsulation: combining data and code into a
single object.

 Information hiding is the ability to hide the
details of data representation from the code
outside of the object.

 Interface: the mechanism that code outside the
object uses to interact with the object.

- The prototypes/signatures of the object’s
functions.

4

The Class
 A class in C++ is similar to a structure.
 A class contains:

- variables (members) AND
- functions (member functions or methods)

• Members can be:
- private: inaccessible outside the class

(this is the default)
- public: accessible outside the class.

5

Example class: IntCell
class IntCell
{
 public:
 // Construct an IntCell. Initial value is 0
 IntCell ()
 { storedValue = 0; }

 // Construct an IntCell. Initial value is initialValue
 IntCell (int initialValue)
 { storedValue = initialValue; }

 // Return the stored value.
 int read ()
 { return storedValue; }

 // Change the stored value to x.
 void write (int x)
 { storedValue = x; }

 private:
 int storedValue;

};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

How is this definition
different from the way
you defined classes in
your previous course?

6

IntCell class

 one data member, four member functions
 private members:

- storedValue: not visible outside the class
 public members:

- the four member functions
- visible and accessible to any function

 constructors
- describes how instances are created
- if none, a default constructor is supplied

7

Using IntCell
int main()
{
 IntCell m; // calls IntCell() constructor

 m.write(5);
 cout << “Cell contents: “ << m.read() << endl;

 return 0;

};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Cell contents: 5

Output:

8

IntCell, version 2
class IntCell
{
 public:

 explicit IntCell (int initialValue = 0)
 : storedValue (initialValue)
 { }

 int read () const
 { return storedValue; }

 void write (int x)
 { storedValue = x; }

 private:
 int storedValue;

};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

What is different from
version 1 (other than
not having comments)?

9

Four changes to IntCell

1. Default parameter
- IntCell (int initialValue = 0)

- This constructor has an optional parameter. If not
specified, initialValue will be 0.

2. Initializer list
- : storedValue (initialValue)

- before the constructor body, assigns initialValue to
storedValue.

- sometimes initializer list is required

IntCell x;
IntCell y(5);

10

Four changes to IntCell
3. explicit constructor

- IntCell constructor is labelled “explicit”
- applies to one-argument constructors only
- Prevents compiler from doing this conversion:

4. Constant member function
- const after param-list declares function will not change

any member values:
- signifies function is an accessor (not a mutator)

IntCell obj;
obj = 37; //should be an error

IntCell obj;
IntCell temp(37);
obj = temp;

int read () const

11

Separation of Interface from
Implementation

 Interface:
- Class declarations with data members and function

prototypes only
- stored in their own header files (*.h)

 Implementation:
- Member function definitions are stored in a separate

file (*.cpp)
- must #include the corresponding header file

 Any file using the class should #include *.h
 *.cpp can change without recompiling its users

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

“What”

“How”

Requires use of the scope resolution operator ::

12

IntCell, version 3

#ifndef _IntCell_H_
#define _IntCell_H_

class IntCell
{
 public:
 explicit IntCell (int initialValue = 0);
 int read () const;
 void write (int x);

 private:
 int storedValue;
};

#endif

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Note the “include guards”
which prevent the file from
being included more than once

IntCell.h:

13

IntCell, version 3

#include “IntCell.h”

IntCell::IntCell (int initialValue)
: storedValue (initialValue)
{ }

int IntCell::read () const
{
 return storedValue;
}

void IntCell::write (int x)
{
 storedValue = x;
}

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Note the scope resolution operations: IntCell::
Indicates which class the function is a member of

IntCell.cpp:

Function signatures must
match exactly with class
declaration, but default
params are not required

14

The Big Three
destructor, copy constructor, operator=

 these functions are provided by default, but the
default behavior may or may not be appropriate.

 Destructor
- called when object is destroyed (goes out of scope or

deleted)
- responsible for freeing resources used by object

➡ calling delete on dynamically allocated objects
➡ closing files

- default destructor applies destructor to each member

15

The Big Three
destructor, copy constructor, operator=

 Copy Constructor
❖ special constructor, constructs new object from an

existing one
❖ called:

➡ for a declaration with initialization:

➡ when object is passed by value
➡ when object is returned by value

❖ default copy constructor:
➡uses assignment for primitive-type data members
➡uses copy constructor for object-type data members

IntCell obj = otherObj;
IntCell obj(otherObj);

But not for:
obj = otherObj

16

The Big Three
destructor, copy constructor, operator=

 operator= (aka copy assignment operator)

- called when = operator is used on existing objects:

- default operator= applies = to each member
(aka member-wise assignment)

obj = otherObj;

17

The Big Three
destructor, copy constructor, operator=

 When do the defaults not work?

 Generally, when one of the members is
dynamically allocated by the class (via a pointer).

 As an example, let’s rewrite IntCell and store the
value in a dynamically allocated memory location.

18

IntCell, version 4
class IntCell
{
 public:
 explicit IntCell (int initialValue = 0);
 int read () const;
 void write (int x);

 private:
 int *storedValue;
};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

IntCell::IntCell (int initialValue)
{ storedValue = new int;
 *storedValue = initialValue; }

int IntCell::read () const
{ return *storedValue; }

void IntCell::write (int x)
{ *storedValue = x; }

What is different from
version 3?

19

IntCell, v. 4, problem with defaults
int main()
{
 IntCell a(2);
 IntCell b = a; //copy constructor
 IntCell c;

 c = b; //operator=

 a.write(4);
 cout << a.read() << endl
 << b.read() << endl
 << c.read() << endl;

};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

What is output? 4
2
2

4
4
4

or

20

IntCell, v. 4, problem with defaults

 Why are they all changed to 4?
 Default copy constructor and operator= all do a

shallow copy. They copy the pointer instead of
making a new copy.

 As an result, all 3 objects point to the same
location in memory

a b

storedValue storedValue

4
c

storedValue

21

IntCell, version 5
class IntCell
{
 public:
 explicit IntCell (int initialValue = 0);

 IntCell(const IntCell &rhs);
 ~IntCell();
 void operator= (const IntCell & rhs);

 int read () const;
 void write (int x);

 private:
 int *storedValue;
};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Note the prototypes for the big 3

22

IntCell, version 5

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

IntCell::IntCell (int initialValue)
{ storedValue = new int;
 *storedValue = initialValue; }

IntCell::IntCell (const IntCell & rhs)
{ storedValue = new int;
 *storedValue = *(rhs.storedValue); }

IntCell::~IntCell()
{ delete storedValue; }

void IntCell::operator= (const IntCell & rhs)
{ *storedValue = *(rhs.storedValue); }

int IntCell::read () const
{ return *storedValue; }

void IntCell::write (int x)
{ *storedValue = x; }

() not needed

() not needed

Note: *storedValue = *(rhs.storedValue);
alternatively: write(rhs.read());

23

Default constructor

 A default constructor is automatically provided if
no constructors are provided by the programmer

 It takes no parameters

 For each data member, it
➡uses defaults for primitive-type data members
➡uses no-parameter constructor for object-type data members

24

Operator Overloading
 Operators such as =, +, ==, and others can be

redefined to work over objects of a class
 The name of the function defining the over-

loaded operator is operator followed by the
operator symbol:
operator+ to overload the + operator, and
operator= to overload the = operator

 Just like a regular member function:
- Prototype goes in the class declaration
- Function definition goes in implementation file

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

25

Overload == for IntCel

 Add the prototype to the class decl:

 Add the function definition to the impl file:

 Use operator== in another file/function:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

IntCell object1(5), object2(0), object3;
if (object2==object3)
 cout << “object 2 and object3 are equal” << endl;

bool operator== (const IntCell &rhs);

bool IntCell::operator== (const IntCell &rhs) {
 return *storedValue == *(rhs.storedValue);
}

26

Exceptions
 An exception is an object that stores information

transmitted outside the normal return sequence.
 It is propagated back through calling stack until

some function catches it.
 If no calling function catches the exception, the

program terminates.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

int findMax (vector<int> a) {
 int max;
 if (a.size()==0)
 throw "Unable to findMax of empty vector";
 else {
 max = a[0];
 //code to find maximum goes here
 }
 return max;
};

