
1

Review: Objects and classes
(Chapter 2)

CS 3358
Summer I 2012

Jill Seaman

2

Object Oriented Programming
 An object contains

- data (or “state”)
- functions that operate over its data

 Usually set up so code outside the object can
access the data only via the member functions.

 If the representation of the data in the object
needs to change:
- The object’s functions must be redefined to handle

the changes.
- The code outside the object does not need to

change, it accesses the object in the same way.

3

Object Oriented Programming
Concepts

 Encapsulation: combining data and code into a
single object.

 Information hiding is the ability to hide the
details of data representation from the code
outside of the object.

 Interface: the mechanism that code outside the
object uses to interact with the object.

- The prototypes/signatures of the object’s
functions.

4

The Class
 A class in C++ is similar to a structure.
 A class contains:

- variables (members) AND
- functions (member functions or methods)

• Members can be:
- private: inaccessible outside the class

(this is the default)
- public: accessible outside the class.

5

Example class: IntCell
class IntCell
{
 public:
 // Construct an IntCell. Initial value is 0
 IntCell ()
 { storedValue = 0; }

 // Construct an IntCell. Initial value is initialValue
 IntCell (int initialValue)
 { storedValue = initialValue; }

 // Return the stored value.
 int read ()
 { return storedValue; }

 // Change the stored value to x.
 void write (int x)
 { storedValue = x; }

 private:
 int storedValue;

};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

How is this definition
different from the way
you defined classes in
your previous course?

6

IntCell class

 one data member, four member functions
 private members:

- storedValue: not visible outside the class
 public members:

- the four member functions
- visible and accessible to any function

 constructors
- describes how instances are created
- if none, a default constructor is supplied

7

Using IntCell
int main()
{
 IntCell m; // calls IntCell() constructor

 m.write(5);
 cout << “Cell contents: “ << m.read() << endl;

 return 0;

};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Cell contents: 5

Output:

8

IntCell, version 2
class IntCell
{
 public:

 explicit IntCell (int initialValue = 0)
 : storedValue (initialValue)
 { }

 int read () const
 { return storedValue; }

 void write (int x)
 { storedValue = x; }

 private:
 int storedValue;

};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

What is different from
version 1 (other than
not having comments)?

9

Four changes to IntCell

1. Default parameter
- IntCell (int initialValue = 0)

- This constructor has an optional parameter. If not
specified, initialValue will be 0.

2. Initializer list
- : storedValue (initialValue)

- before the constructor body, assigns initialValue to
storedValue.

- sometimes initializer list is required

IntCell x;
IntCell y(5);

10

Four changes to IntCell
3. explicit constructor

- IntCell constructor is labelled “explicit”
- applies to one-argument constructors only
- Prevents compiler from doing this conversion:

4. Constant member function
- const after param-list declares function will not change

any member values:
- signifies function is an accessor (not a mutator)

IntCell obj;
obj = 37; //should be an error

IntCell obj;
IntCell temp(37);
obj = temp;

int read () const

11

Separation of Interface from
Implementation

 Interface:
- Class declarations with data members and function

prototypes only
- stored in their own header files (*.h)

 Implementation:
- Member function definitions are stored in a separate

file (*.cpp)
- must #include the corresponding header file

 Any file using the class should #include *.h
 *.cpp can change without recompiling its users

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

“What”

“How”

Requires use of the scope resolution operator ::

12

IntCell, version 3

#ifndef _IntCell_H_
#define _IntCell_H_

class IntCell
{
 public:
 explicit IntCell (int initialValue = 0);
 int read () const;
 void write (int x);

 private:
 int storedValue;
};

#endif

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Note the “include guards”
which prevent the file from
being included more than once

IntCell.h:

13

IntCell, version 3

#include “IntCell.h”

IntCell::IntCell (int initialValue)
: storedValue (initialValue)
{ }

int IntCell::read () const
{
 return storedValue;
}

void IntCell::write (int x)
{
 storedValue = x;
}

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Note the scope resolution operations: IntCell::
Indicates which class the function is a member of

IntCell.cpp:

Function signatures must
match exactly with class
declaration, but default
params are not required

14

The Big Three
destructor, copy constructor, operator=

 these functions are provided by default, but the
default behavior may or may not be appropriate.

 Destructor
- called when object is destroyed (goes out of scope or

deleted)
- responsible for freeing resources used by object

➡ calling delete on dynamically allocated objects
➡ closing files

- default destructor applies destructor to each member

15

The Big Three
destructor, copy constructor, operator=

 Copy Constructor
❖ special constructor, constructs new object from an

existing one
❖ called:

➡ for a declaration with initialization:

➡ when object is passed by value
➡ when object is returned by value

❖ default copy constructor:
➡uses assignment for primitive-type data members
➡uses copy constructor for object-type data members

IntCell obj = otherObj;
IntCell obj(otherObj);

But not for:
obj = otherObj

16

The Big Three
destructor, copy constructor, operator=

 operator= (aka copy assignment operator)

- called when = operator is used on existing objects:

- default operator= applies = to each member
(aka member-wise assignment)

obj = otherObj;

17

The Big Three
destructor, copy constructor, operator=

 When do the defaults not work?

 Generally, when one of the members is
dynamically allocated by the class (via a pointer).

 As an example, let’s rewrite IntCell and store the
value in a dynamically allocated memory location.

18

IntCell, version 4
class IntCell
{
 public:
 explicit IntCell (int initialValue = 0);
 int read () const;
 void write (int x);

 private:
 int *storedValue;
};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

IntCell::IntCell (int initialValue)
{ storedValue = new int;
 *storedValue = initialValue; }

int IntCell::read () const
{ return *storedValue; }

void IntCell::write (int x)
{ *storedValue = x; }

What is different from
version 3?

19

IntCell, v. 4, problem with defaults
int main()
{
 IntCell a(2);
 IntCell b = a; //copy constructor
 IntCell c;

 c = b; //operator=

 a.write(4);
 cout << a.read() << endl
 << b.read() << endl
 << c.read() << endl;

};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

What is output? 4
2
2

4
4
4

or

20

IntCell, v. 4, problem with defaults

 Why are they all changed to 4?
 Default copy constructor and operator= all do a

shallow copy. They copy the pointer instead of
making a new copy.

 As an result, all 3 objects point to the same
location in memory

a b

storedValue storedValue

4
c

storedValue

21

IntCell, version 5
class IntCell
{
 public:
 explicit IntCell (int initialValue = 0);

 IntCell(const IntCell &rhs);
 ~IntCell();
 void operator= (const IntCell & rhs);

 int read () const;
 void write (int x);

 private:
 int *storedValue;
};

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

Note the prototypes for the big 3

22

IntCell, version 5

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

IntCell::IntCell (int initialValue)
{ storedValue = new int;
 *storedValue = initialValue; }

IntCell::IntCell (const IntCell & rhs)
{ storedValue = new int;
 *storedValue = *(rhs.storedValue); }

IntCell::~IntCell()
{ delete storedValue; }

void IntCell::operator= (const IntCell & rhs)
{ *storedValue = *(rhs.storedValue); }

int IntCell::read () const
{ return *storedValue; }

void IntCell::write (int x)
{ *storedValue = x; }

() not needed

() not needed

Note: *storedValue = *(rhs.storedValue);
alternatively: write(rhs.read());

23

Default constructor

 A default constructor is automatically provided if
no constructors are provided by the programmer

 It takes no parameters

 For each data member, it
➡uses defaults for primitive-type data members
➡uses no-parameter constructor for object-type data members

24

Operator Overloading
 Operators such as =, +, ==, and others can be

redefined to work over objects of a class
 The name of the function defining the over-

loaded operator is operator followed by the
operator symbol:
operator+ to overload the + operator, and
operator= to overload the = operator

 Just like a regular member function:
- Prototype goes in the class declaration
- Function definition goes in implementation file

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

25

Overload == for IntCel

 Add the prototype to the class decl:

 Add the function definition to the impl file:

 Use operator== in another file/function:

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

IntCell object1(5), object2(0), object3;
if (object2==object3)
 cout << “object 2 and object3 are equal” << endl;

bool operator== (const IntCell &rhs);

bool IntCell::operator== (const IntCell &rhs) {
 return *storedValue == *(rhs.storedValue);
}

26

Exceptions
 An exception is an object that stores information

transmitted outside the normal return sequence.
 It is propagated back through calling stack until

some function catches it.
 If no calling function catches the exception, the

program terminates.

string name1 = “Steve Jobs”;
cout << “Name” << name1 << endl;

int findMax (vector<int> a) {
 int max;
 if (a.size()==0)
 throw "Unable to findMax of empty vector";
 else {
 max = a[0];
 //code to find maximum goes here
 }
 return max;
};

