
How to Develop Small
Programming Projects*

Jill Seaman
CS 3358

Summer I 2012

1

*without banging your head against the wall

Getting Started

• Start early: we always underestimate the
complexity of the problem.

• Understand the requirements (READ the
directions, don’t make assumptions).

• Understand the material: study first!

• Use some top-down design to break up the
problem into pieces.

• Make a plan before you implement.
2

Develop Programs Progressively
(incremental development)

• Do not attempt to implement and test an
entire program all at once.

• Implement a very small, but workable, part.

• Compile, fix syntax errors, execute, debug

• Add another small part

• Compile + test. Any new errors are
(probably) due to newly added code.

3

Develop Programs Progressively

• Add testcases as you go, keep running them
all to make sure nothing was broken.

• Always have code that compiles and runs
correctly.

• Makes it easy to break up the programming
effort over multiple sittings.

• If you can’t complete the whole project,
you will get “partial credit”.

4

Re-use cautiously:

• Sometimes it helps to start from an existing
solution:

• Duplicate, modify.

• Keep this on a small scale.

5

Always write good
code

• Use good variable and function names from
the start.

• Maintain good indentation from the start.

• Add in-code comments as you go.

- can add variable and function comments
later

• Code is always neat, readable, won’t have to
make it pretty later.

6

Testing

• Have test cases for boundary conditions:

- Empty arrays, full arrays, last element

- Smallest and largest valid values

- Values used in if/while conditions

- Negative numbers

• Have test cases for every line of code.

7

Compiler Errors
• Fix only the first one or two before re-

compiling, later errors may be dependent.

• Don’t speak compiler?
Google the error text (with caution)

• Think of common syntax errors

- Missing semicolons

- Misspelled variable names

- Misplaced () or { }, backwards << or >>
8

Runtime Errors

• Program executes but output is wrong,
Testcase gives unexpected result

• Could learn to use a debugger (gdb?)

• Add output statements in strategic places

- check values of variables (Label!)

- trace execution path

9

Runtime Errors

• Don’t forget to remove couts when the
error is discovered!

• Think of common programming errors

- one-off array indexes

- redeclare a variable inside a loop

- using = instead of ==

- forgetting to update a var in a loop
10

